It has recently been proposed that subsurface oxygen is crucial for the adsorption and subsequent electroreduction of CO on copper. Using density functional theory, we have studied the stability and diffusion of subsurface oxygen in single crystals of copper exposing (111) and (100) facets. Oxygen is at least 1.5 eV more stable on the surface than beneath it for both crystal orientations; interstitial sites are too small to accommodate oxygen. The rate of atomic oxygen diffusion from one layer below a Cu(111) surface to the surface is 5 × 10 s. Oxygen can survive longer in deeper layers, but it does not promote CO adsorption there. Diffusion of subsurface oxygen is easier to the less-dense Cu(100) surface, even from lower layers (rate ≈ 1 × 10 s). Once the applied voltage and dispersion forces are properly modeled, we find that subsurface oxygen is unnecessary for CO adsorption on copper.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.7b03180 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States.
Subsurface oxygen in oxide-derived copper catalysts significantly influences CO activation. However, its effect on the molecular charging process, the key to forming the CO intermediate, remains poorly understood. We employ many-body perturbation theory to investigate the impact of the structural factors induced by the subsurface oxygen on the charged activation of CO.
View Article and Find Full Text PDFACS Catal
January 2025
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Partial oxidation of ethylene over silver catalysts produces more than 30 million metric tons of ethylene oxide (EO) annually. However, the form of active silver surfaces, reactive oxygen species, and dominant pathways of this chemical reaction remains controversial despite decades of research. Here, we use Raman spectroscopy and transient kinetic measurements to demonstrate that higher coverages of peroxide species, present only upon Ag oxide surfaces that form , correlate with greater selectivities to EO.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China.
The hydrogen dissociation and spillover mechanism on oxide-supported Cu catalysts play a pivotal role in the hydrogenation of carbon dioxide to methanol. This study investigates the hydrogen spillover mechanism on Cu/CeO catalysts using spectral characterization under high-pressure reaction conditions and density functional theory (DFT) simulations. The research confirms that the Cu sites serve as the initial dissociation points for the hydrogen molecules.
View Article and Find Full Text PDFJ Contam Hydrol
January 2025
USDA ARS, National Soil Erosion Research Laboratory, West Lafayette, IN 47907, United States of America.
Agricultural phosphorus (P) losses may result from either recently applied fertilizers or from P accumulated in soil and sediment. While both P sources pose an environmental risk to freshwater systems, differentiating between sources is crucial for identifying and implementing management practices to decrease loss. In this study, laboratory rainfall simulations were completed on runoff boxes and undisturbed soil columns before and after fertilizer application.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
The biodegradation of organic aromatic compounds in subsurface environments is often hindered by limited dissolved oxygen. While oxygen supplementation can enhance in situ biodegradation, it poses financial and technical challenges. This study explores introducing low-oxygen concentrations in anaerobic environments for efficient contaminant removal, particularly in scenarios where coexisting pollutants are present.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!