Enhancing Docetaxel Delivery to Multidrug-Resistant Cancer Cells with Albumin-Coated Nanocrystals.

Mol Pharm

Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.

Published: January 2018

Intravenous delivery of poorly water-soluble anticancer drugs such as docetaxel (DTX) is challenging due to the low bioavailability and the toxicity related to solubilizing excipients. Colloidal nanoparticles are used as alternative carriers, but low drug loading capacity and circulation instability limit their clinical translation. To address these challenges, DTX nanocrystals (NCs) were prepared using Pluronic F127 as an intermediate stabilizer and albumin as a functional surface modifier, which were previously found to be effective in producing small and stable NCs. We hypothesize that the albumin-coated DTX NCs (DTX-F-alb) will remain stable in serum-containing medium so as to effectively leverage the enhanced permeability and retention effect. In addition, the surface-bound albumin, in its native form, may contribute to cellular transport of NCs through interactions with albumin-binding proteins such as secreted protein acidic and rich in cysteine (SPARC). DTX-F-alb NCs showed sheet-like structure with an average length, width, and thickness of 284 ± 96, 173 ± 56, and 40 ± 8 nm and remained stable in 50% serum solution at a concentration greater than 10 μg/mL. Cytotoxicity and cellular uptake of DTX-F-alb and unformulated (free) DTX were compared on three cell lines with different levels of SPARC expression and DTX sensitivity. While the uptake of free DTX was highly dependent on DTX sensitivity, DTX-F-alb treatment resulted in relatively consistent cellular levels of DTX. Free DTX was more efficient in entering drug-sensitive B16F10 and SKOV-3 cells than DTX-F-alb, with consistent cytotoxic effects. In contrast, multidrug-resistant NCI/ADR-RES cells took up DTX-F-alb more than free DTX with time and responded better to the former. This difference was reduced by SPARC knockdown. The high SPARC expression level of NCI/ADR-RES cells, the known affinity of albumin for SPARC, and the opposing effect of SPARC knockdown support that DTX-F-alb have exploited the surface-bound albumin-SPARC interaction in entering NCI/ADR-RES cells. Albumin-coated NC system is a promising formulation for the delivery of hydrophobic anticancer drugs to multidrug-resistant tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6064681PMC
http://dx.doi.org/10.1021/acs.molpharmaceut.7b00783DOI Listing

Publication Analysis

Top Keywords

free dtx
16
nci/adr-res cells
12
dtx
10
cells albumin-coated
8
anticancer drugs
8
sparc expression
8
dtx sensitivity
8
cells dtx-f-alb
8
sparc knockdown
8
dtx-f-alb
7

Similar Publications

Poor selectivity to tumor cells is a major drawback in the clinical application of the antitumor drug docetaxel (DTX). Peptide-drug conjugates (PDCs) constructed by modifying antitumor drugs with peptide ligands that have high affinity to certain overexpressed receptors in tumor cells are increasingly assessed for their possibility of tumor-selective drug delivery. In the present research, DTX is condensed with 3-(pyridin-2-yldisulfanyl) propanoic acid via ester bond to obtain the intermediate Py-SS-DTX.

View Article and Find Full Text PDF

Background: Digital therapeutics (DTx) in the form of mobile health (mHealth) self-management programs have demonstrated effectiveness in reducing disease activity across various diseases, including fibromyalgia and arthritis. However, the content of online self-management programs varies widely, making them difficult to compare.

Aim: This study aims to employ generative artificial intelligence (AI)-based knowledge graphs and network analysis to categorize and structure mHealth content at the example of a fibromyalgia self-management program.

View Article and Find Full Text PDF
Article Synopsis
  • Effective targeting using nano drug delivery systems (NDDS) helps deliver medications directly into cancer cells, improving treatment efficiency by overcoming cellular defenses.
  • The study developed a dual-responsive nanoparticle system loaded with the chemotherapy drug DTX that activates specifically in the tumor environment, leading to a significant release of the drug.
  • In tests, the new formulation showed 5 times greater cytotoxicity compared to free DTX, effectively inhibiting tumor growth in mice with lower doses, indicating a promising advancement in cancer treatment strategies.
View Article and Find Full Text PDF

In cancer therapy, it is essential to selectively release cytotoxic agents into the tumor to prevent the adverse effects associated with anticancer drugs. Thus, in this study, a stimuli-sensitive polymer-drug conjugate was synthesized for selective drug release. Doxorubicin (DOX) and docetaxel (DTX) were conjugated onto novel poly(jasmine lactone) based copolymer via a thioketal (TK) linker.

View Article and Find Full Text PDF

A novel core-shell nanocarrier system has been designed for co-delivery of a small anticancer drug, docetaxel (DTX) and tumor suppressor (TS) miR-34a named as Exo(PAN). The core is formed by pH dependent polyamine salt aggregates (PSA) containing both the payloads and the shell is formed by RAW 264.7 cell derived exosomal fragments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!