To better mimic native tissue microenvironments, current efforts have moved beyond single growth factor delivery to more complex multiple growth factor delivery with distinct release profiles. Electrospun gelatin, a widely investigated drug delivery vehicle, requires postprocessing crosslinking techniques that generate a mesh with uniform crosslinking density, limiting the ability to deliver multiple factors at different rates. Herein, we describe a method to independently control release of multiple factors from a single electrospun gelatin mesh. Two in situ crosslinking modalities, photocrosslinking of methacyrlated gelatin and reactive crosslinking of gelatin with a diisocyanate, are coelectrospun to generate distinct fiber populations with different crosslinking chemistry and density in a single mesh. The photocrosslinked gelatin-methacrylate resulted in a relatively rapid release of a model protein (48 ± 12% at day 1, 96 ± 3% at day 10) due to diffusion of embedded protein from the crosslinked fibers. The reactive crosslinking system displayed a more sustained release (7 ± 5% at day 1, 33 ± 2% at day 10) that was attributed to the conjugation of protein to gelatin with the diisocyanate, requiring degradation of gelatin prior to diffusion out of the fibers. Both modalities displayed tunable release profiles. Subsequent release studies of a cospun mesh with two different crosslinked fiber populations confirmed that the cospun mesh displayed multifactor release with independent release profiles. Overall, this bimodal, in situ crosslinking approach enables the delivery of multiple factors with distinct release kinetics from a single mesh and is expected to have broad utility in tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1155-1164, 2018.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.36342DOI Listing

Publication Analysis

Top Keywords

situ crosslinking
12
electrospun gelatin
12
release profiles
12
multiple factors
12
release
10
society biomaterials
8
bimodal situ
8
crosslinking
8
multifactor release
8
growth factor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!