Though generally considered insulating, recent progress on the discovery of conductive porous metal-organic frameworks (MOFs) offers new opportunities for their integration as electroactive components in electronic devices. Compared to classical semiconductors, these metal-organic hybrids combine the crystallinity of inorganic materials with easier chemical functionalization and processability. Still, future development depends on the ability to produce high-quality films with fine control over their orientation, crystallinity, homogeneity, and thickness. Here self-assembled monolayer substrate modification and bottom-up techniques are used to produce preferentially oriented, ultrathin, conductive films of Cu-CAT-1. The approach permits to fabricate and study the electrical response of MOF-based devices incorporating the thinnest MOF film reported thus far (10 nm thick).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201704291 | DOI Listing |
Molecules
December 2024
Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
In recent years, increased attention has been given to the effective use of chitin nanofibers (ChNFs). We have developed a method to fabricate thinner chitin nanomaterials, called scale-down chitin nanofibers (SD-ChNFs), by a bottom-up procedure at the nanoscale level, with subsequent disintegration by electrostatic repulsion. The surface modification of SD-ChNFs is anticipated to provide new properties and functions for their practical applications.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory of Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China. Electronic address:
Highly ordered ultrathin nanosheets (NSs) of Au(I)-Cys were fabricated through aggregation-induced supramolecular self-assembly triggered by an extended agitation in an alkaline environment. The synthesized Au(I)-Cys NSs exhibited intense luminescence and exceptional chirality. Remarkably, additions of biothiols to Au(I)-Cys NSs have significantly enhanced their luminescence emission, and circular dichroism properties coupled with morphological modulations into nanoflowers, nanodendrites, or closely packed aggregates.
View Article and Find Full Text PDFACS Nano
January 2025
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
Since the invention and commercialization of poly(-phenylene benzobisoxazole) (PBO) fibers, numerous breakthroughs in applications have been realized both in the military and aerospace industries, attributed to its superb properties. Particularly, PBO nanofibers (PNFs) not only retain the high performance of PBO fiber but also exhibit impressive nanofeatures and desirable processability, which have been extensively applied in extreme scenarios. However, no review has yet comprehensively summarized the preparation, applications, and prospective challenges of PNFs to the best of our knowledge.
View Article and Find Full Text PDFSmall
January 2025
Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
Mater Horiz
January 2025
Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.
In recent years, area-selective deposition (ASD) processes have attracted increasing interest in both academia and industry due to their bottom-up nature, which can simplify current fabrication processes with improved process accuracy. Hence, more research is being conducted to both expand the toolbox of ASD processes to fabricate nanostructured materials and to understand the underlying mechanisms that impact selectivity. This article provides an overview of current developments in ASD processes, beginning with an introduction to various approaches to achieve ASD and the factors that affect selectivity between growth and non-growth surfaces, using area-selective atomic layer deposition (AS-ALD) as the main model system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!