Aspasomes of methotrexate with antioxidant, ascorbyl palmitate, were developed and optimized using factorial design by varying parameters such as lipid molar ratio, drug to lipid molar ratio, and type of hydration buffer for transdermal delivery for disease modifying activity in rheumatoid arthritis (RA). Aspasomes were characterized by drug-excipients interaction, particle size analysis, determination of zeta potential, entrapment efficiency, and surface properties. The best formulation was loaded into hydrogel for evaluation of in vitro drug release and tested in vivo against adjuvant induced arthritis model in wistar rats, by assessing various physiological, biochemical, hematological, and histopathological parameters. Optimized aspasome formulation exhibited smooth surface with particle size 386.8 nm, high drug loading (19.41%), negative surface potential, and controlled drug release in vitro over 24 h with a steady permeation rate. Transdermal application of methotrexate-loaded aspasome hydrogel for 12 days reduced rat paw diameter (21.25%), SGOT (40.43%), SGPT (54.75%), TNFα (33.99%), IL β (34.79%), cartilage damage (84.41%), inflammation (82.37%), panus formation (84.38%), and bone resorption (80.52%) as compared to arthritic control rats. Free methotrexate-treated group showed intermediate effects. However, drug-free aspasome treatment did not show any effect. The experimental results indicate a positive outcome in development of drug-loaded therapeutically active carrier system which presents a non-invasive controlled release transdermal formulation with good drug loading, drug permeation rate, and having better disease modifications against RA than the free drug, thereby providing a more attractive therapeutic strategy for rheumatoid disease management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12249-017-0939-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!