The sesquiterpene botrydial from Botrytis cinerea induces phosphatidic acid production in tomato cell suspensions.

Planta

Instituto de Investigaciones Biológicas, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC. 1245, 7600, Mar del Plata, Argentina.

Published: April 2018

The phytotoxin botrydial triggers PA production in tomato cell suspensions via PLD and PLC/DGK activation. PLC/DGK-derived PA is partially required for botrydial-induced ROS generation. Phosphatidic acid (PA) is a phospholipid second messenger involved in the induction of plant defense responses. It is generated via two distinct enzymatic pathways, either via phospholipase D (PLD) or by the sequential action of phospholipase C and diacylglycerol kinase (PLC/DGK). Botrydial is a phytotoxic sesquiterpene generated by the necrotrophic fungus Botrytis cinerea that induces diverse plant defense responses, such as the production of reactive oxygen species (ROS). Here, we analyzed PA and ROS production and their interplay upon botrydial treatments, employing tomato (Solanum lycopersicum) cell suspensions as a model system. Botrydial induces PA production within minutes via PLD and PLC/DGK. Either inhibition of PLC or DGK diminishes ROS generation triggered by botrydial. This indicates that PLC/DGK is upstream of ROS production. In tomato, PLC is encoded by a multigene family constituted by SlPLC1-SlPLC6 and the pseudogene SlPLC7. We have shown that SlPLC2-silenced plants have reduced susceptibility to B. cinerea. In this work, we studied the role of SlPLC2 on botrydial-induced PA production by silencing the expression of SlPLC2 via a specific artificial microRNA. Upon botrydial treatments, SlPLC2-silenced-cell suspensions produce PA levels similar to wild-type cells. It can be concluded that PA is a novel component of the plant responses triggered by botrydial.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-018-2843-8DOI Listing

Publication Analysis

Top Keywords

production tomato
12
cell suspensions
12
botrytis cinerea
8
cinerea induces
8
phosphatidic acid
8
tomato cell
8
pld plc/dgk
8
ros generation
8
plant defense
8
defense responses
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!