Although induced defenses are widespread in plants, the degree to which plants respond to herbivore kairomones (incidental chemicals that herbivores produce independent of herbivory), the costs and benefits of responding to cues of herbivory risk, and the ecological consequences of induced defenses remain unclear. We demonstrate that undamaged tomatoes, Solanum lycopersicum, induce defenses in response to a kairomone (locomotion mucus) of snail herbivores (Helix aspersa). Induced defense had significant costs and benefits for plants: plants exposed to snail mucus or a standard defense elicitor (methyl jasmonate, MeJA) exhibited slower growth, but also experienced less herbivory by an insect herbivore (Spodoptera exigua). We also find that kairomones from molluscan herbivores lead to deleterious effects on insect herbivores mediated through changes in plant defense, i.e., mucus-induced defenses of Solanum lycopersicum-reduced growth of S. exigua. These results suggest that incidental cues of widespread generalist herbivores might be a mechanism creating variation in plant growth, plant defense, and biotic interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-018-4070-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!