Multiple spin functionalities are probed on Pt/LaCoMnO/Nb:SrTiO, a device composed by a ferromagnetic insulating barrier sandwiched between non-magnetic electrodes. Uniquely, LaCoMnO thin films present strong perpendicular magnetic anisotropy of magnetocrystalline origin, property of major interest for spintronics. The junction has an estimated spin-filtering efficiency of 99.7% and tunneling anisotropic magnetoresistance (TAMR) values up to 30% at low temperatures. This remarkable angular dependence of the magnetoresistance is associated with the magnetic anisotropy whose origin lies in the large spin-orbit interaction of Co which is additionally tuned by the strain of the crystal lattice. Furthermore, we found that the junction can operate as an electrically readable magnetic memory device. The findings of this work demonstrate that a single ferromagnetic insulating barrier with strong magnetocrystalline anisotropy is sufficient for realizing sensor and memory functionalities in a tunneling device based on TAMR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5770439 | PMC |
http://dx.doi.org/10.1038/s41598-017-19129-5 | DOI Listing |
J Colloid Interface Sci
March 2025
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; Heilongjiang Provincial Key Laboratory of Advanced Quantum Functional Materials and Sensor Devices, Harbin 150001, China. Electronic address:
Optical synaptic devices (OSDs) have neuromorphic vision sensing capability showing great potential in breaking the von Neumann bottleneck and facilitating future artificial vision systems. However, the applications of two-dimensional (2D) material-based OSDs are still impeded by complicated structures, preparation techniques and so on. In this work, we propose a 2D OSD based on BiSe films prepared by a chemical vapor deposition method followed by an in-situ thermal treatment.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Facultad de Ciencias Básicas, Departamento de Física y Electrónica, Universidad de Córdoba, Monteria 230002, Colombia.
We investigated the hysteresis, pseudo-critical, and compensation behaviors of a quasi-spherical FeCo alloy nanoparticle (2 nm in diameter) using Monte Carlo simulations with thermal bath-type algorithms and a 3D mixed Ising model. The nanostructure was modeled in a body-centered cubic lattice (BCC) through the following configurations: spin S=3/2 for Co and Q=2 for Fe. These simulations reveal that, under the influence of crystal and magnetic fields, the nanoparticle exhibits compensation phenomena, exchange bias, and pseudo-critical temperatures.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
With the increasing development of metaverse and human-computer interaction (HMI) technologies, artificial intelligence (AI) applications in virtual reality (VR) environments are receiving significant attention. This study presents a self-sensing facial recognition mask (FRM) utilizing triboelectric nanogenerators (TENG) and machine learning algorithms to enhance user immersion and interaction. Various TENG negative electrode materials are evaluated to improve sensor performance, and the efficacy of a single sensor is confirmed.
View Article and Find Full Text PDFFront Artif Intell
February 2025
School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
Accurate identification of bird species is essential for monitoring biodiversity, analyzing ecological patterns, assessing population health, and guiding conservation efforts. Birds serve as vital indicators of environmental change, making species identification critical for habitat protection and understanding ecosystem dynamics. With over 1,300 species, India's avifauna presents significant challenges due to morphological and acoustic similarities among species.
View Article and Find Full Text PDFNano Lett
March 2025
Department of Imaging Physics, Delft University of Technology, 2628 CN Delft, The Netherlands.
Due to stringent thermal budgets in cryogenic technologies such as superconducting quantum computers and sensors, electronic building blocks that simultaneously offer low energy consumption, fast switching, low error rates, a small footprint, and simple fabrication are pivotal for large-scale devices. Here, we demonstrate a superconducting switch with attojoule switching energy, high speed (pico-second rise/fall times), and high integration density (on the order of 10 μm per switch). It consists of a superconducting nanochannel and a metal heater separated by an insulating silica layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!