Lung cancer is the leading cause of cancer-related death worldwide, in large part due to its high propensity to metastasize and to develop therapy resistance. Adaptive responses to hypoxia and epithelial-mesenchymal transition (EMT) are linked to tumor metastasis and drug resistance, but little is known about how oxygen sensing and EMT intersect to control these hallmarks of cancer. Here, we show that the oxygen sensor PHD3 links hypoxic signaling and EMT regulation in the lung tumor microenvironment. PHD3 was repressed by signals that induce EMT and acted as a negative regulator of EMT, metastasis, and therapeutic resistance. PHD3 depletion in tumors, which can be caused by the EMT inducer TGFβ or by promoter methylation, enhanced EMT and spontaneous metastasis via HIF-dependent upregulation of the EGFR ligand TGFα. In turn, TGFα stimulated EGFR, which potentiated SMAD signaling, reinforcing EMT and metastasis. In clinical specimens of lung cancer, reduced PHD3 expression was linked to poor prognosis and to therapeutic resistance against EGFR inhibitors such as erlotinib. Reexpression of PHD3 in lung cancer cells suppressed EMT and metastasis and restored sensitivity to erlotinib. Taken together, our results establish a key function for PHD3 in metastasis and drug resistance and suggest opportunities to improve patient treatment by interfering with the feedforward signaling mechanisms activated by PHD3 silencing. This study links the oxygen sensor PHD3 to metastasis and drug resistance in cancer, with implications for therapeutic improvement by targeting this system. .

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-17-1346DOI Listing

Publication Analysis

Top Keywords

lung cancer
16
metastasis drug
12
drug resistance
12
emt metastasis
12
phd3
9
emt
9
metastasis
8
resistance egfr
8
egfr inhibitors
8
oxygen sensor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!