Electrolyte selection and microbial toxicity for electrochemical oxidative water treatment using a boron-doped diamond anode to support site specific contamination incident response.

Chemosphere

US Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, OH 45220, USA. Electronic address:

Published: April 2018

Intentional and unintentional contamination incidents, such as terrorist attacks, natural disasters, and accidental spills, can result in large volumes of contaminated water. These waters may require pre-treatment before disposal and assurances that treated waters will not adversely impact biological processes at wastewater treatment facilities, or receiving waters. Based on recommendations of an industrial workgroup, this study addresses such concerns by studying electrochemical advanced oxidation process (EAOP) pre-treatment for contaminated waters, using a boron-doped diamond (BDD) anode, prior to discharge to wastewater treatment facilities. Reaction conditions were investigated, and microbial toxicity was assessed using the Microtox toxicity assay and the Nitrification Inhibition test. A range of contaminants were studied including herbicides, pesticides, pharmaceuticals and flame retardants. Resulting toxicities varied with supporting electrolyte from 5% to 92%, often increasing, indicating that microbial toxicity, in addition to parent compound degradation, should be monitored during treatment. These toxicity results are particularly novel because they systematically compare the microbial toxicity effects of a variety of supporting electrolytes, indicating some electrolytes may not be appropriate in certain applications. Further, these results are the first known report of the use of the Nitrification Inhibition test for this application. Overall, these results systematically demonstrate that anodic oxidation using the BDD anode is useful for addressing water contaminated with refractory organic contaminants, while minimizing impacts to wastewater plants or receiving waters accepting EAOP-treated effluent. The results of this study indicate nitrate can be a suitable electrolyte for incident response and, more importantly, serve as a baseline for site specific EAOP usage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129861PMC
http://dx.doi.org/10.1016/j.chemosphere.2018.01.007DOI Listing

Publication Analysis

Top Keywords

microbial toxicity
16
boron-doped diamond
8
site specific
8
incident response
8
wastewater treatment
8
treatment facilities
8
receiving waters
8
bdd anode
8
nitrification inhibition
8
inhibition test
8

Similar Publications

The gut microbiota, an extensive ecosystem harboring trillions of bacteria, plays a pivotal role in human health and disease, influencing diverse conditions from obesity to cancer. Among the microbiota's myriad functions, the capacity to metabolize drugs remains relatively unexplored despite its potential implications for drug efficacy and toxicity. Experimental methods are resource-intensive, prompting the need for innovative computational approaches.

View Article and Find Full Text PDF

Septic shock involves severe systemic inflammatory reaction toward various invading species, such as microorganisms and microbial toxins. Such a response is complicated and characterized as being a dynamic and time-dependent phenomenon. During this response, a significant amount of pro-inflammatory cytokines may be produced, causing a rapid death rate in septic victims and occasionally leading to apoptosis of immune cells within the first hours of septic reaction.

View Article and Find Full Text PDF

Polychlorinated biphenyls (PCBs) are persistent organic pollutants and are emitted during e-waste activities. Once they enter into the environment, PCBs could pose toxic effects to environmental compartments and public health. Reductive dechlorination offers a sustainable solution to manage the PCBs-contaminated environment.

View Article and Find Full Text PDF

Chemical fungicides have been used to control fungal diseases like Sclerotinia sclerotiorum. These fungicides must be restricted because of their toxicity and the development of resistance strains. Therefore, utilizing natural nanoscale materials in agricultural production is a potential alternative.

View Article and Find Full Text PDF

Introduction: Healthcare systems face several challenges, with microbial infections being one of the main concerns. Therapeutic drug monitoring (TDM) is a strategy that has been encouraged to optimize antimicrobial regimens, particularly those with significant toxicity and narrow therapeutic indices, such as amikacin (AMK). We aimed to evaluate AMK concentrations of patients in a non-routine TDM setting and compare the performance of immunoassay and chromatography methods for routine clinical use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!