We previously identified the indole 264 as a potent in vitro antagonist of the human OXE receptor that mediates the actions of the powerful eosinophil chemoattractant 5-oxo-ETE. No antagonists of this receptor are currently commercially available or are being tested in clinical studies. The lack of a rodent ortholog of the OXE receptor has hampered progress in this area because of the unavailability of commonly used mouse or rat animal models. In the present study, we examined the feasibility of using the cynomolgus monkey as an animal model to investigate the efficacy of orally administered 264 in future in vivo studies. We first confirmed that 264 is active in monkeys by showing that it is a potent inhibitor of 5-oxo-ETE-induced actin polymerization and chemotaxis in granulocytes. The major microsomal metabolites of 264 were identified by cochromatography with authentic chemically synthesized standards and LC-MS/MS as its ω2-hydroxy and ω2-oxo derivatives, formed by ω2-oxidation of its hexyl side chain. Small amounts of ω1-oxidation products were also identified. None of these metabolites have substantial antagonist potency. High levels of 264 appeared rapidly in the blood following oral administration to both rats and monkeys, and declined to low levels by 24 h. As with microsomes, its major plasma metabolites in monkeys were ω2-oxidation products. We conclude that the monkey is a suitable animal model to investigate potential therapeutic effects of 264. This, or a related compound with diminished susceptibility to ω2-oxidation, could be a useful therapeutic agent in eosinophilic disorders such as asthma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625806PMC
http://dx.doi.org/10.1016/j.ejps.2018.01.021DOI Listing

Publication Analysis

Top Keywords

oxe receptor
12
eosinophil chemoattractant
8
rats monkeys
8
animal model
8
model investigate
8
0
6
metabolism pharmacokinetics
4
pharmacokinetics potent
4
potent n-acylindole
4
n-acylindole antagonist
4

Similar Publications

Article Synopsis
  • Antiphospholipid syndrome (APS) IgG enhances the release of neutrophil extracellular traps (NETs), which are linked to thrombotic events, but the exact mechanism remains unclear.
  • Researchers analyzed serum from thrombotic APS patients and found elevated levels of 5-oxoETE, which they tested for its effects on NET formation and oxidative stress using various methods.
  • The study concluded that 5-oxoETE plays a significant role in promoting NET formation and thrombosis in APS, suggesting that targeting it or its receptor could be a potential treatment for APS-related thrombosis and other similar autoimmune diseases.
View Article and Find Full Text PDF

Background: 5-Oxo-6,8,11,14-eicosatetraenoic acid (5-Oxo-ETE) is a metabolite of arachidonic acid shown to promote biological activities in different cell types.

Summary: 5-Oxo-ETE is synthesized from the 5-lipoxygenase product 5S-HETE (5S-hydroxy-6,8,11,14-eicosatetraenoic acid) in the presence of the nicotinamide adenine dinucleotide phosphate (NADP)+-dependent enzyme 5-hydroxyeicosanoid dehydrogenase (5-HEDH). Under some conditions that promote oxidation of NADPH to NADP+, such as the respiratory burst in phagocytic cells, eosinophils, and neutrophils, oxidative stress in monocytes and dendritic cells, and cell death, 5-Oxo-ETE synthesis can be dramatically increased.

View Article and Find Full Text PDF

Concise Syntheses of Microsomal Metabolites of a Potent OXE (Oxoeicosanoid) Receptor Antagonist.

Chem Pharm Bull (Tokyo)

January 2024

Claude Pepper Institute and Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology.

5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is the most potent eosinophil chemoattractant among lipid mediators, and its actions are mediated by the selective oxoeicosanoid (OXE) receptor. Our group previously developed a highly potent indole-based OXE antagonist, S-C025, with an IC value of 120 pM. S-C025 was converted to a number of metabolites in the presence of monkey liver microsomes.

View Article and Find Full Text PDF

Metabolism of anti-inflammatory OXE (oxoeicosanoid) receptor antagonists by nonhuman primates.

Eur J Pharm Sci

May 2022

Meakins-Christie Laboratories, Centre for Translational Biology, McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada. Electronic address:

5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is the only product of the proinflammatory 5-lipoxygenase pathway with potent chemoattractant effects for human eosinophils, suggesting an important role in eosinophilic diseases such as asthma. 5-Oxo-ETE, acting through its selective OXE receptor, induces dermal eosinophilia in both humans and monkeys. To block its effects, we designed selective indole-based OXE antagonists containing hexyl (S-230) or phenylhexyl (S-C025 and S-Y048) side chains, which inhibit allergen-induced dermal and pulmonary inflammation in monkeys, suggesting that they may be useful therapeutic agents in humans.

View Article and Find Full Text PDF

Background And Purpose: The 5-lipoxygenase product, 5-oxo-ETE (5-oxo-6,8,11,14-eicosatetraenoic acid), is a potent chemoattractant for eosinophils and neutrophils. However, little is known about its pathophysiological role because of the lack of a rodent ortholog of the oxoeicosanoid (OXE) receptor. The present study aimed to determine whether the selective OXE receptor antagonist S-Y048 can inhibit allergen-induced pulmonary inflammation in a monkey model of asthma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!