Aerobic and anaerobic cellulose utilization by Paenibacillus sp. CAA11 and enhancement of its cellulolytic ability by expressing a heterologous endoglucanase.

J Biotechnol

Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea. Electronic address:

Published: February 2018

For cost-effective lignocellulosic biofuel/chemical production, consolidated bioprocessing (CBP)-enabling microorganisms utilizing cellulose as well as producing biofuel/chemical are required. A novel strain Paenibacillus sp. CAA11 isolated from sediment was found to be not only as a cellulose degrader under both aerobic and strict anaerobic conditions but also as a producer of cellulosic biofuel/chemicals. Paenibacillus sp. CAA11 secreted cellulolytic enzymes by its own secretion system and produced ethanol as well as short-chain organic acids (formic acid, acetic acid, lactic acid) from cellulose. Cellulolytic activity of the strain was significantly enhanced by expressing a heterologous endoglucanase 168Cel5 from Bacillus subtilis under both aerobic and anaerobic conditions. The strain harboring the 168cel5 gene revealed 2-fold bigger halo zone on Congo-red plate and 1.75-fold more aerobic cellulose utilization in liquid medium compared with the negative control. Notably, under anaerobic conditions, the recombinant strain expressing 168Cel5 consumed 1.83-fold more cellulose (5.10 g/L) and produced 5-fold more ethanol (0.65 g/L) along with 5-fold more total acids (1.6 g/L) compared with the control, resulting 2.73-fold higher yields. This result demonstrates the potential of Paenibacillus sp. CAA11 as a suitable aerobic and anaerobic CBP-enabling microbe with cellulolytic production of ethanol and short-chain organic acids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2018.01.007DOI Listing

Publication Analysis

Top Keywords

paenibacillus caa11
16
aerobic anaerobic
12
anaerobic conditions
12
cellulose utilization
8
expressing heterologous
8
heterologous endoglucanase
8
short-chain organic
8
organic acids
8
cellulose
6
aerobic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!