Extracorporeal membrane oxygenation before surgical repair of a postinfarction ventricular septal defect.

J Thorac Cardiovasc Surg

Department of Anesthesia & Perioperative Care, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Winnipeg Regional Health Authority Cardiac Sciences Program, St Boniface Hospital, Winnipeg, Manitoba, Canada. Electronic address:

Published: April 2018

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtcvs.2017.11.083DOI Listing

Publication Analysis

Top Keywords

extracorporeal membrane
4
membrane oxygenation
4
oxygenation surgical
4
surgical repair
4
repair postinfarction
4
postinfarction ventricular
4
ventricular septal
4
septal defect
4
extracorporeal
1
oxygenation
1

Similar Publications

Development of a Self-Deploying Extra-Aortic Compression Device for Medium-Term Hemodynamic Stabilization: A Feasibility Study.

Adv Sci (Weinh)

December 2024

Graduate School of Biomedical Engineering, Faculty of Engineering, and Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Kensington Campus, Sydney, NSW, 2052, Australia.

Hemodynamic stabilization is crucial in managing acute cardiac events, where compromised blood flow can lead to severe complications and increased mortality. Conditions like decompensated heart failure (HF) and cardiogenic shock require rapid and effective hemodynamic support. Current mechanical assistive devices, such as intra-aortic balloon pumps (IABP) and extracorporeal membrane oxygenation (ECMO), offer temporary stabilization but are limited to short-term use due to risks associated with prolonged blood contact.

View Article and Find Full Text PDF

Background: Lung transplantation is a viable lifesaving option for patients with diffuse pulmonary arteriovenous malformations (AVMs). We present a case of diffuse pulmonary AVMs associated with juvenile polyposis and hereditary hemorrhagic telangiectasia (JP-HHT) that was successfully managed by lung transplantation.

Case Presentation: A 19-year-old woman developed severe hypoxemia due to pulmonary AVMs diagnosed at 4 years of age.

View Article and Find Full Text PDF

Feasibility and safety of ultra-low volume ventilation (≤ 3 ml/kg) combined with extra corporeal carbon dioxide removal (ECCOR) in acute respiratory failure patients.

Crit Care

December 2024

Department of Anesthesia and Intensive Care Unit, Regional University Hospital of Montpellier, St-Eloi Hospital, PhyMedExp, INSERM U1046, CNRS UMR, University of Montpellier, 9214, Montpellier Cedex 5, France.

Background: Ultra-protective ventilation is the combination of low airway pressures and tidal volume (Vt) combined with extra corporeal carbon dioxide removal (ECCOR). A recent large study showed no benefit of ultra-protective ventilation compared to standard ventilation in ARDS (Acute Respiratory Distress Syndrome) patients. However, the reduction in Vt failed to achieve the objective of less than or equal to 3 ml/kg predicted body weight (PBW).

View Article and Find Full Text PDF

Reply Letter to "Pulsatile Flow During Venoarterial-Extracorporeal Membrane Oxygenation: A Topic in Need of Attention".

ASAIO J

October 2024

Division of Cardiac Surgery Department of Surgery Johns Hopkins Hospital, Baltimore, Maryland Division of Neurosciences Critical Care Department of Neurology, Neurosurgery, Anesthesiology and Critical Care Medicine Johns Hopkins Hospital, Baltimore, Maryland.

View Article and Find Full Text PDF

Background: Pediatric solid organ transplantation is challenging due to the limited availability of suitable organs resulting in an increasing waitlist. Many pediatric transplant recipients receive organs from deceased donors, often after neurologic determination of death. Organ donation from patients on extracorporeal membrane oxygenation (ECMO) at the time of death has been described in adults, offering the potential for donation after circulatory determination of death (DCDD) with minimal ischemia time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!