Download full-text PDF |
Source |
---|
Biotechnol Biofuels Bioprod
January 2025
Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.
Background: Fungal pretreatment for partial separation of lignocellulosic components may reduce lignocellulose recalcitrance during the production of biofuels and biochemicals. Quantitative and qualitative modification of plant lignin through genetic engineering or traditional breeding may also reduce the recalcitrance. This study was conducted to examine the effects of combining these two approaches using three white rot fungi and mulberry wood with an altered lignin structure.
View Article and Find Full Text PDFNature
January 2025
Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
During normal cellular homeostasis, unfolded and mislocalized proteins are recognized and removed, preventing the build-up of toxic byproducts. When protein homeostasis is perturbed during ageing, neurodegeneration or cellular stress, proteins can accumulate several forms of chemical damage through reactive metabolites. Such modifications have been proposed to trigger the selective removal of chemically marked proteins; however, identifying modifications that are sufficient to induce protein degradation has remained challenging.
View Article and Find Full Text PDFNature
January 2025
Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
Carbon-hydrogen (C-H) bonds are the foundation of essentially every organic molecule, making them an ideal place to do chemical synthesis. The key challenge is achieving selectivity for one particular C(sp)-H bond. In recent years, metalloenzymes have been found to perform C(sp)-H bond functionalization.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
In mammalian oocytes, large-scale chromatin organization regulates transcription, nuclear architecture, and maintenance of chromosome stability in preparation for meiosis onset. Pre-ovulatory oocytes with distinct chromatin configurations exhibit profound differences in metabolic and transcriptional profiles that ultimately determine meiotic competence and developmental potential. Here, we developed a deep learning pipeline for the non-invasive prediction of chromatin structure and developmental potential in live mouse oocytes.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
January 2025
Department of Chemistry, University of Florida, Gainesville, FL, USA.
Biocatalysis provides access to synthetically challenging molecules and commercially and pharmaceutically relevant natural product analogs while adhering to principles of green chemistry. Cytochromes P450 (P450s) are amongst the most superlative and versatile oxidative enzymes found in nature and are desired regio- and stereoselective biocatalysts, particularly for structurally complex hydrocarbon skeletons. We used 10 genome-sequenced Streptomyces strains, selected based on their preponderance of P450s, to biotransform the bioactive diterpenoid abietic acid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!