Present work addresses the reactivity of several phenyl-substituted metal-carbene complexes with 4-methylstyrene by means of density functional theory OPBE simulations. Different paths that lead to cyclopropanation were explored and compared to the olefin metathesis mechanism. For this purpose, we chose four different catalysts: (i) the Grubbs second-generation olefin metathesis catalyst, (ii) a Grubs second-generation-like complex, in which ruthenium is replaced by iron, and (iii) two iron carbene complexes (a piano stool and a porphyrin iron carbene) that experimentally catalyze alkene cyclopropanation. Results suggest that the nature of the applying mechanism is very sensitive to the coordination around the metal center and the spin state of the metal-carbene complex. Cyclopropanation by open-shell metal-carbene complexes seems to preferentially proceed through a two-step radical mechanism, in which the two C-C bonds are sequentially formed (path C). Singlet-state carbenes proceed either through a direct attack of the olefin to the carbene (path D) when the formation of the metallacycle is not feasible or through a reductive elimination from the metallacyclobutane when this intermediate is accessible both kinetically and thermodynamically (path B).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.7b11656DOI Listing

Publication Analysis

Top Keywords

metal-carbene complexes
8
olefin metathesis
8
iron carbene
8
reactivity metal
4
metal carbenes
4
carbenes olefins
4
olefins theoretical
4
theoretical insights
4
carbene
4
insights carbene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!