Smartphone-Based VOC Sensor Using Colorimetric Polydiacetylenes.

ACS Appl Mater Interfaces

Department of Chemical Engineering, Kyung Hee University, Yongin 17104, Korea.

Published: February 2018

Owing to a unique colorimetric (typically blue-to-red) feature upon environmental stimulation, polydiacetylenes (PDAs) have been actively employed in chemosensor systems. We developed a highly accurate and simple volatile organic compound (VOC) sensor system that can be operated using a conventional smartphone. The procedure begins with forming an array of four different PDAs on conventional paper using inkjet printing of four corresponding diacetylenes followed by photopolymerization. A database of color changes (i.e., red and hue values) is then constructed on the basis of different solvatochromic responses of the 4 PDAs to 11 organic solvents. Exposure of the PDA array to an unknown solvent promotes color changes, which are imaged using a smartphone camera and analyzed using the app. A comparison of the color changes to the database promoted by the 11 solvents enables the smartphone app to identify the unknown solvent with 100% accuracy. Additionally, it was demonstrated that the PDA array sensor was sufficiently sensitive to accurately detect the 11 VOC gases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b18121DOI Listing

Publication Analysis

Top Keywords

color changes
12
voc sensor
8
pda array
8
unknown solvent
8
smartphone-based voc
4
sensor colorimetric
4
colorimetric polydiacetylenes
4
polydiacetylenes unique
4
unique colorimetric
4
colorimetric typically
4

Similar Publications

Hydroquinone (HQ) and copper ions (Cu) are categorized as environmental pollutants that are severely limited in water. Designing a selective assay for discriminating HQ from its two isomers and the convenient determination of Cu is of great importance. Herein, a Tb-based metal-organic framework (Tb-MOF) and HQ are assembled innovatively into a ratiometric fluorescence nanoprobe to selectively distinguish HQ and subsequent quantitative visual detection of Cu.

View Article and Find Full Text PDF

To improve the expressiveness and realism of illustration images, the experiment innovatively combines the attention mechanism with the cycle consistency adversarial network and proposes an efficient style transfer method for illustration images. The model comprehensively utilizes the image restoration and style transfer capabilities of the attention mechanism and the cycle consistency adversarial network, and introduces an improved attention module, which can adaptively highlight the key visual elements in the illustration, thereby maintaining artistic integrity during the style transfer process. Through a series of quantitative and qualitative experiments, high-quality style transfer is achieved, especially while retaining the original features of the illustration.

View Article and Find Full Text PDF

Purpose: To identify the macular retinal layer thickness changes in polyarteritis nodosa (PAN) patients without pathological findings appearing in color fundus photography (CFP), and to investigate the correlations with disease durations.

Methods: A total of 24 PAN patients who had been for 3 years or more and underwent SD-OCT were recruited from the UK Biobank, with exclusions for diabetes, eye disease, or abnormal CFP findings. Only the right eyes were included, with each PAN patient paired one-to-one with a control matched for age, sex, and ethnicity.

View Article and Find Full Text PDF

Visual detection of kanamycin with functionalized Au nanoparticles.

Mikrochim Acta

January 2025

Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, 510665, People's Republic of China.

A simple and rapid colorimetric detection strategy, based on hydrogen bond identification of 6-thioguanine (6-TG) functionalized Au nanoparticles (AuNPs), is proposed for highly selective and sensitive determination of kanamycin (KA). In this strategy, the hydrogen bond interaction between 6-TG and kanamycin induces AuNPs to agglomerate, with a consequent color change of AuNPs from wine red to purple or even blue. The kanamycin concentrations can be quantified by employing UV-vis spectrophotometer.

View Article and Find Full Text PDF

Anticounterfeiting technologies have become increasingly crucial due to the growing issue of counterfeit goods, particularly in high-value industries. Traditional methods such as barcodes and holograms are prone to replication, prompting the need for advanced, cost-effective, and efficient solutions. In this work, a practical application of anodic aluminum oxide (AAO) membranes are presented for anticounterfeiting, which addresses the challenges of high production costs and complex fabrication processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!