Untargeted Antifungal Treatment in the ICU: Changing Definitions and Labels Do Not Change the Evidence.

Crit Care Med

Department of Biopathology and medical Biotechnologies (DIBIMED), Section of Anesthesia Analgesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy.

Published: February 2018

Download full-text PDF

Source
http://dx.doi.org/10.1097/CCM.0000000000002791DOI Listing

Publication Analysis

Top Keywords

untargeted antifungal
4
antifungal treatment
4
treatment icu
4
icu changing
4
changing definitions
4
definitions labels
4
labels change
4
change evidence
4
untargeted
1
treatment
1

Similar Publications

Pancreatic ductal adenocarcinoma has a unique tumor microbiome and the systemic depletion of bacteria or fungi using antibiotic/antifungal cocktails leads to a decrease in pancreatic tumor burden in mice. However, functional studies remain rare due to the limited availability of clinically relevant microbiota. Here, we describe in detail the isolation of bacteria and fungi from the small intestine and tumor of pancreatic cancer patients at the Rogel Cancer Center.

View Article and Find Full Text PDF

Unlabelled: Cryptococcal meningoencephalitis (CME) is deadly. CME is responsible for 19% of deaths in AIDS patients, and its global mortality is greater than 60%. The recommended CME therapy requires amphotericin B (AmB), a fungicidal drug targeting fungal ergosterol.

View Article and Find Full Text PDF

species can form beneficial relationships with hosts as endophytes, including the phytopathogen-inhibiting strain, MH191, isolated from wheat plants. Using genomic characterization and untargeted metabolomics, we explored the capacity of strain MH191 to inhibit a range of fungal phytopathogens through the production of secondary metabolites. Complete genome assembly of strain MH191 predicted 24 biosynthetic gene clusters.

View Article and Find Full Text PDF

In recent years, there has been an increasing focus on microbial ecology and its possible impact on agricultural production, owing to its eco-friendly nature and sustainable use. The current study employs metabolomics technologies and bioinformatics approaches to identify changes in the exometabolome of B24. This research aims to shed light on the mechanisms and metabolites responsible for the antifungal and growth promotion strategies, with potential applications in sustainable agriculture.

View Article and Find Full Text PDF

The triazole antifungals posaconazole and itraconazole can cause pseudohyperaldosteronism with hypertension and hypokalemia, edema, and gynecomastia by inhibiting steroid synthesis and metabolism. Mechanisms underlying pseudohyperaldosteronism include inhibition of adrenal 11β-hydroxylase cytochrome-P450 (CYP) 11B1 and 17α-hydroxylase (CYP17A1) as well as peripherally expressed 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). To enhance specificity for fungal CYP51, tetrazoles have been developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!