Background: The authors hypothesized that a multiparameter intraoperative decision support system with real-time visualizations may improve processes of care and outcomes.

Methods: Electronic health record data were retrospectively compared over a 6-yr period across three groups: experimental cases, in which the decision support system was used for 75% or more of the case at sole discretion of the providers; parallel controls (system used 74% or less); and historical controls before system implementation. Inclusion criteria were adults under general anesthesia, advanced medical disease, case duration of 60 min or longer, and length of stay of two days or more. The process measures were avoidance of intraoperative hypotension, ventilator tidal volume greater than 10 ml/kg, and crystalloid administration (ml · kg · h). The secondary outcome measures were myocardial injury, acute kidney injury, mortality, length of hospital stay, and encounter charges.

Results: A total of 26,769 patients were evaluated: 7,954 experimental cases, 10,933 parallel controls, and 7,882 historical controls. Comparing experimental cases to parallel controls with propensity score adjustment, the data demonstrated the following medians, interquartile ranges, and effect sizes: hypotension 1 (0 to 5) versus 1 (0 to 5) min, P < 0.001, beta = -0.19; crystalloid administration 5.88 ml · kg · h (4.18 to 8.18) versus 6.17 (4.32 to 8.79), P < 0.001, beta = -0.03; tidal volume greater than 10 ml/kg 28% versus 37%, P < 0.001, adjusted odds ratio 0.65 (0.53 to 0.80); encounter charges $65,770 ($41,237 to $123,869) versus $69,373 ($42,101 to $132,817), P < 0.001, beta = -0.003. The secondary clinical outcome measures were not significantly affected.

Conclusions: The use of an intraoperative decision support system was associated with improved process measures, but not postoperative clinical outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1097/ALN.0000000000002023DOI Listing

Publication Analysis

Top Keywords

decision support
16
support system
16
experimental cases
12
parallel controls
12
0001 beta
12
processes care
8
intraoperative decision
8
controls system
8
historical controls
8
process measures
8

Similar Publications

Introduction: The purpose of this study was to evaluate the association between body composition, overall survival, odds of receiving treatment, and patient-reported outcomes (PROs) in individuals living with metastatic non-small-cell lung cancer (mNSCLC).

Methods: This retrospective analysis was conducted in newly diagnosed patients with mNSCLC who had computed-tomography (CT) scans and completed PRO questionnaires close to metastatic diagnosis date. Cox proportional hazard models and logistic regression evaluated overall survival and odds of receiving treatment, respectively.

View Article and Find Full Text PDF

Study Question: How accurately can artificial intelligence (AI) models predict sperm retrieval in non-obstructive azoospermia (NOA) patients undergoing micro-testicular sperm extraction (m-TESE) surgery?

Summary Answer: AI predictive models hold significant promise in predicting successful sperm retrieval in NOA patients undergoing m-TESE, although limitations regarding variability of study designs, small sample sizes, and a lack of validation studies restrict the overall generalizability of studies in this area.

What Is Known Already: Previous studies have explored various predictors of successful sperm retrieval in m-TESE, including clinical and hormonal factors. However, no consistent predictive model has yet been established.

View Article and Find Full Text PDF

Background: Medroxyprogesterone acetate (MPA), a synthetic progestogen, is extensively used for the treatment of various conditions, including contraception, irregular menstruation, functional uterine bleeding, and endometriosis. However, like all pharmaceutical agents, MPA is associated with adverse drug reactions. This study aimed to evaluate the adverse events (AEs) associated with MPA in by analyzing real-world data from the U.

View Article and Find Full Text PDF

Background: Total Hip Arthroplasty (THA) is a transformative surgical intervention for hip joint disorders, necessitating meticulous preoperative planning for optimal outcomes. With the emergence of Artificial Intelligence (AI), preoperative planning paradigms have evolved, leveraging AI algorithms for enhanced decision support and imaging analysis. This systematic review aims to comprehensively evaluate the role of AI in THA preoperative planning, synthesizing evidence from studies exploring various AI techniques and their applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!