Described is a visible light-promoted three-component tandem annulation of amines, aryl/alkyl isothiocyanates, and α-bromoesters to form 2-iminothiazolidin-4-ones in the absence of metal and photocatalyst at room temperature. This [1 + 2 + 2] cyclization strategy involves visible light-promoted C-S/C-N bond formation and features a powerful approach to the synthesis of 2-iminothiazolidin-4-ones with broad substrate scope, excellent functional group tolerance, mild reaction conditions, step-economy, and simple operation, which also has potential applications in the pharmaceutical industry. UV-vis spectroscopy indicates that an in situ-generated H-bonding electron donor-acceptor (EDA) complex probably acts as the photocatalyst, facilitating the reaction process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.7b02940DOI Listing

Publication Analysis

Top Keywords

visible light-promoted
12
light-promoted three-component
8
three-component tandem
8
tandem annulation
8
synthesis 2-iminothiazolidin-4-ones
8
annulation synthesis
4
2-iminothiazolidin-4-ones described
4
described visible
4
annulation amines
4
amines aryl/alkyl
4

Similar Publications

Light-promoted aromatic denitrative chlorination.

Nat Chem

January 2025

CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China.

Nitroarenes are readily accessible bulk chemicals and can serve as versatile starting materials for a series of synthetic reactions. However, due to the inertness of the C-NO bond, the direct denitrative substitution reaction with unactivated nitroarenes remains challenging. Chemists rely on sequential reduction and diazotization followed by the Sandmeyer reaction or the nucleophilic aromatic substitution of activated nitroarenes to realize nitro group transformations.

View Article and Find Full Text PDF

Visible-light-promoted azidation/arylation of unactivated alkenes with Togni-N electron donor-acceptor complexes.

Org Biomol Chem

January 2025

Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.

A visible-light-promoted azidation/arylation of unactivated alkenes with Togni-N has been achieved, leading to a series of azidated pyrrolo[1,2-]indoles under photocatalyst-free conditions. Notably, an EDA complex derived from the electron-rich indole derivatives and Togni-N served as the key intermediate in this reaction.

View Article and Find Full Text PDF

Enhanced oxidative potential and SO heterogeneous oxidation on candle soot after photochemical aging: Influencing mechanisms of different irradiation wavelengths.

Environ Pollut

December 2024

School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Jiangsu, 213164, China. Electronic address:

Photochemistry plays a significant role in the atmospheric aging processes of soot. However, the physicochemical properties and changes in environmental and health effects of soot particles from sacrificial sources after photochemical aging remain unclear. The reaction mechanisms of soot under different irradiation wavelengths require further investigation.

View Article and Find Full Text PDF

Continuous activation of phenoxide and CFI for multiple trifluoromethylations.

Chem Commun (Camb)

January 2025

Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan.

The introduction of multiple trifluoromethyl (CF) groups into aromatic compounds remains a significant challenge in synthetic chemistry. Here, we report an unprecedented visible light-promoted multiple trifluoromethylation of phenols using commercially available CFI. The key to success lies in our discovery of a "continuous activation strategy" that enables sequential trifluoromethylations through single-electron transfer from photoexcited phenoxide to CFI until all or positions are occupied.

View Article and Find Full Text PDF

We report, for the first time, a visible-light-promoted Markovnikov hydroalkoxylation of α-trifluoromethyl alkenes with 1,2-diketones. This transformation proceeded smoothly in the presence of a tertiary amine (EtN), providing a series of enol ethers containing the trifluoromethylated tetrasubstituted center in moderate to excellent yields. In this protocol, hydrogen atom transfer between this amine and 1,2-diketone substrate affords a ketyl radical and an α-aminoalkyl radical, which engages in the formation of a radical anion of the α-CF alkene via a single electron transfer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!