Described is a visible light-promoted three-component tandem annulation of amines, aryl/alkyl isothiocyanates, and α-bromoesters to form 2-iminothiazolidin-4-ones in the absence of metal and photocatalyst at room temperature. This [1 + 2 + 2] cyclization strategy involves visible light-promoted C-S/C-N bond formation and features a powerful approach to the synthesis of 2-iminothiazolidin-4-ones with broad substrate scope, excellent functional group tolerance, mild reaction conditions, step-economy, and simple operation, which also has potential applications in the pharmaceutical industry. UV-vis spectroscopy indicates that an in situ-generated H-bonding electron donor-acceptor (EDA) complex probably acts as the photocatalyst, facilitating the reaction process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.7b02940 | DOI Listing |
Nat Chem
January 2025
CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China.
Nitroarenes are readily accessible bulk chemicals and can serve as versatile starting materials for a series of synthetic reactions. However, due to the inertness of the C-NO bond, the direct denitrative substitution reaction with unactivated nitroarenes remains challenging. Chemists rely on sequential reduction and diazotization followed by the Sandmeyer reaction or the nucleophilic aromatic substitution of activated nitroarenes to realize nitro group transformations.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
A visible-light-promoted azidation/arylation of unactivated alkenes with Togni-N has been achieved, leading to a series of azidated pyrrolo[1,2-]indoles under photocatalyst-free conditions. Notably, an EDA complex derived from the electron-rich indole derivatives and Togni-N served as the key intermediate in this reaction.
View Article and Find Full Text PDFEnviron Pollut
December 2024
School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Jiangsu, 213164, China. Electronic address:
Photochemistry plays a significant role in the atmospheric aging processes of soot. However, the physicochemical properties and changes in environmental and health effects of soot particles from sacrificial sources after photochemical aging remain unclear. The reaction mechanisms of soot under different irradiation wavelengths require further investigation.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan.
The introduction of multiple trifluoromethyl (CF) groups into aromatic compounds remains a significant challenge in synthetic chemistry. Here, we report an unprecedented visible light-promoted multiple trifluoromethylation of phenols using commercially available CFI. The key to success lies in our discovery of a "continuous activation strategy" that enables sequential trifluoromethylations through single-electron transfer from photoexcited phenoxide to CFI until all or positions are occupied.
View Article and Find Full Text PDFJ Org Chem
December 2024
Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
We report, for the first time, a visible-light-promoted Markovnikov hydroalkoxylation of α-trifluoromethyl alkenes with 1,2-diketones. This transformation proceeded smoothly in the presence of a tertiary amine (EtN), providing a series of enol ethers containing the trifluoromethylated tetrasubstituted center in moderate to excellent yields. In this protocol, hydrogen atom transfer between this amine and 1,2-diketone substrate affords a ketyl radical and an α-aminoalkyl radical, which engages in the formation of a radical anion of the α-CF alkene via a single electron transfer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!