Nanotemplates derived from the self-assembly of AB-type block copolymers provide an elegant route to achieve well-defined metallic dot arrays, even if the variety of pattern symmetries is restricted due to the limited number of structures offered by microphase separated diblock copolymers. A strategy that relies on the use of complex network structures accessible through the self-assembly of linear ABC-type terpolymers is presented for the formation of metallic nanodots arrays with "outside-the-box" symmetries. Patterned templates formed by the cubic Q and orthorhombic O network structures are used as excellent platforms to build well-ordered gold nanodot arrays with unique p3m1 and p2 symmetries, respectively. A simple yet efficient blending strategy is used to tune the critical dimensions of the p3m1 pattern while laterally ordered gold nanodot arrays are also demonstrated through a directed self-assembly approach. Such highly ordered gold nanodots with tunable particle dimensions and array periods, enabling the control of their plasmonic responses, are attractive probes for biological imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.201700754 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!