The Al/P-based frustrated Lewis pair (FLP) Mes P-C(AltBu) =C(H)Ph (1; Mes=mesityl) reacted as an efficient two-electron reductant with benzil to afford a cis-enediolate that was coordinated to the FLP through P-O and Al-O bonds and the formation of a seven-membered heterocycle (2). The phosphorus atom is oxidised from +III to +V. Similar heterocycles (3 a to 3 f) were formed if 1 was treated with various enones (acrolein, acrylate, acrylamide). The resulting enolates are bound to the FLP through P-C and Al-O bonds. Cyclopropenone gave an adduct (4) with the C=O bond coordinated by P and Al. Ynones gave a fascinating variety of different structures. 1,3-Diphenylprop-2-yn-1-one afforded a remarkable allene-type moiety with two cumulated C=C bonds (5); 3-hexyn-2-one yielded a ligand with two conjugated C=C bonds by C-H bond activation at the carbonyl methyl group (7); and 4-(trimethylsilyl)-3-butyn-2-one reacted by C-H bond cleavage, formation of an enolate group with a terminal C=C bond, and shift of the proton to the P atom (8). The C≡C bond was not affected. Allene compound 5 rearranged at elevated temperature and in daylight through the formation of a tricyclic compound by C-H bond activation and C-C bond formation. DFT calculations on this unusual rearrangement suggest insertion of the central allene C atom into the C-H bond of a methyl group and the intermediate formation of a C ring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201706089 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
RIKEN: Rikagaku Kenkyujo, Center for Sustainable Resource Science, 2-1 Hirosawa, 351-0198, Wako, JAPAN.
Transition-metal-catalyzed selective and efficient activation of an inert C-H bond in an organic substrate is of importance for the development of streamlined synthetic methodologies. An attractive approach is the design of a metal catalyst capable of recognizing an organic substrate through noncovalent interactions to control reactivity and selectivity. We report here a spirobipyridine ligand that bears a hydroxy group that recognizes pyridine and quinoline substrates through hydrogen bonding, and in combination with an iridium catalyst enables site-selective C-H borylation.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France.
The grafting of a -(CH)PR moiety on an NHC ligand backbone in the Mn(I) complex [Cp(CO)Mn(IMes)] followed by double deprotonation opens a route to bidentate ligands with extreme electron-donating character. Such remarkable electronic properties can even allow intramolecular sp C-H functionalization in typically inert square-planar Rh(I) dicarbonyl complexes.
View Article and Find Full Text PDFChem Sci
January 2025
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
Reported herein is the first example of a ruthenium-catalyzed C-H activation/annulation of phenothiazine-3-carbaldehydes to construct structurally diverse pyrido[3,4-]phenothiazin-3-iums with dual-emission characteristics. Novel organic single-molecule white-light materials based on pyrido[3,4-]phenothiazin-3-iums with dual-emission and thermally activated delayed fluorescence (TADF) characteristics have been developed for the first time herein. Furthermore, the dual-emission molecule could be fabricated as water-dispersed NPs, which could be applied in two-channel emission intensity ratio imaging to observe the intercellular structure and can specifically target the cell membrane.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.
A Pt(II) aqua complex supported by mesoporous silica nanoparticle (MSN)-immobilized sulfonated CNN pincer ligand featuring a rigid SiO tether was prepared. This hybrid material was tested as a catalyst in H/D exchange reactions of C(sp)-H bonds of selected aromatic substrates and DO-2,2,2-trifluoroethanol- (TFE-) mixtures or CDCOD acting as a source of exchangeable deuterium. The catalyst immobilization served as a means to not only enable the catalyst's recyclability but also minimize the coordination of sulfonate groups and the metal centers originating from different catalyst's moieties that would preserve reactive Pt(OH) fragments needed for catalytic C-H bond activation.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
ConspectusThe Mannich reaction, involving the nucleophilic addition of an enol(ate) intermediate to an imine or iminium ion, is one of the most widely used synthetic methods for the synthesis of β-amino carbonyl compounds. Nevertheless, the homo-Mannich reaction, which utilizes a homoenolate intermediate as the nucleophilic partner and provides straightforward access to the valuable γ-amino carbonyl compounds, remains underexplored. This can be largely attributed to the difficulties in generation and manipulation of the homoenolate species, despite various homoenolate equivalents that have been developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!