Mouse lung fibroblasts are highly susceptible to necroptosis in a reactive oxygen species-dependent manner.

Biochem Pharmacol

Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany. Electronic address:

Published: July 2018

Mouse embryonic fibroblasts (MEFs) have extensively been used to study necroptosis, a recently identified form of programmed cell death. However, very little is yet known about the role of necroptosis and its regulation by reactive oxygen species (ROS) in cell types naturally exposed to high oxygen levels such as mouse lung fibroblasts (MLFs). Here, we discover that MLFs are highly susceptible to undergo necroptosis in a ROS-dependent manner upon exposure to a prototypic death receptor-mediated necroptotic stimulus, i.e. cotreatment with tumor necrosis factor (TNF)α, Smac mimetic and the caspase inhibitor zVAD.fmk (TSZ). Kinetic analysis revealed that TSZ rapidly induces cell death in MLFs. Pharmacological inhibition of receptor-interacting protein kinase (RIPK)1 by necrostatin-1 (Nec-1) or RIPK3 by GSK'872 significantly rescues TSZ-stimulated cell death. Also, genetic silencing of RIPK3 or mixed lineage kinase domain-like pseudokinase (MLKL) significantly protects MLFs from TSZ-mediated cell death. Prior to cell death, TSZ significantly increases production of ROS. Importantly, addition of radical scavengers such as butylated hydroxyanisole (BHA) or α-Tocopherol (α-Toc) significantly suppresses TSZ-induced cell death in parallel with a significant reduction of ROS generation. Consistently, BHA prevented TSZ-triggered phosphorylation of MLKL similar to the addition of GSK'872. Thus, our study demonstrates for the first time that MLFs are prone to undergo necroptosis in response to a prototypic necroptotic stimulus and identifies ROS as important mediators of TSZ-triggered necroptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2018.01.025DOI Listing

Publication Analysis

Top Keywords

cell death
24
mouse lung
8
lung fibroblasts
8
highly susceptible
8
reactive oxygen
8
undergo necroptosis
8
necroptotic stimulus
8
cell
7
death
7
necroptosis
6

Similar Publications

Diagnosis of lung cancer using salivary miRNAs expression and clinical characteristics.

BMC Pulm Med

January 2025

Universal Scientific Education and Research Network (USERN), Tehran, Iran.

Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.

View Article and Find Full Text PDF

Omega-3 fatty acids: molecular weapons against chemoresistance in breast cancer.

Cell Mol Biol Lett

January 2025

Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy.

Breast cancer is the most commonly diagnosed type of cancer and the leading cause of cancer-related death in women worldwide. Highly targeted therapies have been developed for different subtypes of breast cancer, including hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, triple-negative breast cancer (TNBC) and metastatic breast cancer disease are primarily treated with chemotherapy, which improves disease-free and overall survival, but does not offer a curative solution for these aggressive forms of breast cancer.

View Article and Find Full Text PDF

Background: Oral squamous cell carcinoma (OSCC) ranks as the sixth most common malignancy globally. Cisplatin is the standard chemotherapy for OSCC, but resistance often reduces its efficacy, necessitating new treatments with fewer side effects. Rumex dentatus L.

View Article and Find Full Text PDF

Tongue squamous cell carcinoma (TSCC) is a common malignant oral cancer characterized by substantial invasion, a high rate of lymph node and distant metastasis, and a high recurrence rate. This study aims to provide new ideas for the diagnosis and treatment of TSCC patients by exploring the related mechanisms that affect the migration and invasion of TSCC and inhibit the migration and spread of cancer cells. The results indicated the rate of high expression of IL-17 in cancer tissues was greater than that in tongue tissues, and the expression of IL-17 was related to the TNM stage.

View Article and Find Full Text PDF

Targeting aldehyde dehydrogenase ALDH3A1 increases ferroptosis vulnerability in squamous cancer.

Oncogene

January 2025

Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.

Ferroptosis is a unique modality of regulated cell death induced by excessive lipid peroxidation, playing a crucial role in tumor suppression and providing potential therapeutic strategy for cancer treatment. Here, we find that aldehyde dehydrogenase-ALDH3A1 tightly links to ferroptosis in squamous cell carcinomas (SCCs). Functional assays demonstrate the enzymatic activity-dependent regulation of ALDH3A1 in protecting SCC cells against ferroptosis through catalyzing aldehydes and mitigating lipid peroxidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!