Neuroprotective effects of quercetin 4'-O-β-d-diglucoside on human striatal precursor cells in nutrient deprivation condition.

Acta Histochem

Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090, Pesche, Isernia, Italy. Electronic address:

Published: February 2018

Several investigations have demonstrated neuroprotective effects of quercetin, a polyphenol widely present in nature, against neurotoxic chemicals, as well as in neuronal injury/neurodegenerative disease models. Most of these studies have been performed with quercetin aglycone and its metabolites, while scanty data are available on its glycosides. This study is aimed at investigating the neuroprotective effects of quercetin 3,4'-O-β-d-diglucoside (Q3,4'dG), isolated from the bulbs of the white cultivar (Allium cepa L.), using an in vitro model of human striatal precursor cells (HSPs), a primary culture isolated from the striatal primordium and previously characterized. To study the effect of Q3,4'dG on cell survival, HSPs were exposed to nutrient deprivation created by replacing culture medium with phosphate buffer saline (PBS). Our findings showed that Q3,4'dG treatment significantly promoted cell survival and strongly decreased apoptosis induced by nutrient deprivation, as evaluated by cell proliferation/death analyses. In addition, since the adhesive capacities of cells are essential for cell survival, the expression of some adhesion molecules, such as pancadherin and focal adhesion kinase, was evaluated. Interestingly, PBS exposure significantly decreased the expression of both molecules, while in the presence of Q3,4'dG this effect was prevented. This study provides evidence of a neuroprotective role exerted by Q3,4'dG and suggests its possible implication in sustaining neuronal survival for prevention and treatment of neurodegenerative disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acthis.2018.01.003DOI Listing

Publication Analysis

Top Keywords

neuroprotective effects
12
effects quercetin
12
nutrient deprivation
12
cell survival
12
human striatal
8
striatal precursor
8
precursor cells
8
q34'dg
5
neuroprotective
4
quercetin
4

Similar Publications

It was previously shown that the original dipeptide mimetic of the 4th loop of neurotrophin-3 (NT-3) hexamethylenediamide bis-(N-monosuccinyl-L-asparaginyl-L-asparagine) (GTS-301), like the full-length neurotrophin, predominantly activates the tyrosine kinase receptor TrkC and has a neuroprotective effect in vitro at concentrations of 10-10 M, as well as antidiabetic (0.1 and 0.5 mg/kg) and antidepressant (5 and 10 mg/kg) effects after systemic administration in rodents.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a global health concern with a rising incidence, particularly in aging populations and those with a genetic predisposition. Over time, DM contributes to various complications, including nephropathy, retinopathy, peripheral arterial disease (PAD), and neuropathy. Among these, diabetic neuropathy and PAD stand out due to their high prevalence and significant impact on patients' quality of life.

View Article and Find Full Text PDF

Background: Caffeic acid phenethyl ester (CAPE), an active component of honey bee propolis, has been demonstrated in animal models and studies to have anti-inflammatory, antioxidant, immunomodulatory, neuroprotective, and cytoprotective properties.

Objective: We investigated the efficacy of CAPE, which we believe may be therapeutically useful in facial nerve restoration due to its neuroprotective and antioxidant properties.

Material And Methods: 20 Sprague Dawley rats were divided randomly into 4 primary and 2 secondary groups and assigned as control, methylprednisolone, CAPE, CAPE+methylprednisolone groups and the sham and the trauma groups.

View Article and Find Full Text PDF

Background: Scientific evidence to guide clinicians on the use of different antiseizure drugs in combination therapy is either very limited or lacking. In this study, the impact of lacosamide and perampanel alone and in combination was tested in corneal kindling model in mice, which is a cost-effective mechanism for screening of antiseizure drugs.

Methods: The impact of lacosamide (5 mg/kg) and perampanel (0.

View Article and Find Full Text PDF

Correction for 'Neuroprotective effects of fermented yak milk-derived peptide LYLKPR on HO-injured HT-22 cells' by Yunlong Jiang , , 2022, , 12021-12038, https://doi.org/10.1039/D2FO02131E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!