Cascaded photo-potential in a carbon dot-hematite system driving overall water splitting under visible light.

Nanoscale

Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China.

Published: February 2018

Hematite is an earth-abundant and ubiquitous semiconductor with a suitable bandgap of 2.1 eV for solar water splitting. Unfortunately, it suffers from a low conduction band position compared to the H/H potential and typically an external bias has to be applied. Here, we demonstrate carbon dot-hematite (CD-FeO) nanocomposites as photocatalysts for visible-light-driven overall water splitting without any external bias or scavenger. Notably, the CD-FeO nanocomposites (carbon dots, 5 wt%) show a hydrogen evolution rate of 0.390 μmol h and an oxygen evolution rate of 0.225 μmol h under visible light illumination. In our system, carbon dots have been well coupled with hematite and are detected to generate a photo-induced potential. This photo-potential can be combined with hematite to meet the requirement for overall water splitting. In addition, carbon dots can significantly improve the charge separation efficiency. Our finding may greatly enhance the practical application of hematite for solar water splitting.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7nr08000jDOI Listing

Publication Analysis

Top Keywords

water splitting
20
carbon dots
12
carbon dot-hematite
8
visible light
8
solar water
8
external bias
8
cd-feo nanocomposites
8
evolution rate
8
carbon
5
water
5

Similar Publications

Background: Central arterial stiffening is associated with brain white matter (WM) damage and gray matter (GM) volume loss in older adults, but little is known about this association from an adult lifespan perspective.

Purpose: To investigate the associations of central arterial stiffness with WM microstructural organization, WM lesion load, cortical thickness, and GM volume in healthy adults across the lifespan.

Study Type: This is a cross-sectional study.

View Article and Find Full Text PDF

Water electrolysis recognizes nickel foam (NF) as an effective current collector due to its excellent conductivity. However, recent studies highlighted NF's effect on the efficacy of various electrocatalytic reactions, primarily due to the presence of electroactive chemical species at its interface. In contrast, numerous reports suggested that NF has a negligible impact on overall electrocatalytic activity.

View Article and Find Full Text PDF

Graphitic Carbon Nitride for Photocatalytic Hydrogen Production from Water Splitting: Nano-Morphological Control and Electronic Band Tailoring.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Solidifcation Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.

Semiconductor polymeric graphitic carbon nitride (g-CN) photocatalysts have garnered significant and rapidly increasing interest in the realm of visible light-driven hydrogen evolution reactions. This interest stems from their straightforward synthesis, ease of functionalization, appealing electronic band structure, high physicochemical and thermal stability, and robust photocatalytic activity. This review starts with the basic principle of photocatalysis and the development history, synthetic strategy, and structural properties of g-CN materials, followed by the rational design and engineering of g-CN from the perspectives of nano-morphological control and electronic band tailoring.

View Article and Find Full Text PDF

Solar Light-Driven Efficient Degradation of Organic Pollutants Mediated by S-Scheme MoS@TiO-Layered Structures.

Nanomaterials (Basel)

December 2024

Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

This study focuses on achieving high photocatalytic activity using MoS/TiO heterostructures (MOT). To this end, MoS and TiO were synthesized by employing hydrothermal synthesis techniques, and then MoS/TiO heterostructures were synthesized by using 1:1, 1:2, 1:3, and 1:4 ratios of MoS and TiO, respectively. While the structural and electronic changes for the 1:2 and 1:3 ratios were relatively minor, significant modifications in bandgaps and morphology were observed for the 1:1 and 1:4 ratios.

View Article and Find Full Text PDF

Layered double hydroxide modified bismuth vanadate as an efficient photoanode for enhancing photoelectrochemical water splitting.

Mater Horiz

January 2025

Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, 441-8580, Aichi, Japan.

Photoelectrochemical (PEC) water splitting has attracted significant interest as a promising approach for producing clean and sustainable hydrogen fuel. An efficient photoanode is critical for enhancing PEC water splitting. Bismuth vanadate (BiVO) is a widely recognized photoanode for PEC applications due to its visible light absorption, suitable valence band position for water oxidation, and outstanding potential for modifications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!