The uptake, retention and clearance of drug-loaded dendrimer nanoparticles in astrocytes - electrophysiological quantification.

Biomater Sci

Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, 1000 Ljubljana, Slovenia.

Published: January 2018

Nanoparticle-based drug delivery systems may impose risks to patients due to potential toxicity associated with a lack of clearance from cells or prolonged carrier-cell retention. This work evaluates vesicular cell uptake, retention and the possible transfer of endocytosed methylprednisolone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles (NPs) into secretory vesicles of rat cultured astrocytes. The cells were incubated with NPs and unitary vesicle fusions/fissions with the plasma membrane were monitored employing high-resolution membrane capacitance measurements. In the NP-treated cells the frequency of unitary exocytotic events was significantly increased. The presence of NPs also induces an increase in the size of exocytotic vesicles interacting with the plasma membrane, which exhibit transient fusion with prolonged fusion pore dwell-time. Live-cell confocal imaging revealed that once NPs internalize into endocytotic compartments they remain in the cell for 7 days, although a significant proportion of these merge with secretory vesicles destined for exocytosis. Co-localization studies show the route of clearance of NPs from cells via the exocytotic pathway. These findings bring new insight into the understanding of the intracellular trafficking and biological interactions of drug-loaded dendrimer NPs targeting astrocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7bm00886dDOI Listing

Publication Analysis

Top Keywords

uptake retention
8
drug-loaded dendrimer
8
dendrimer nanoparticles
8
secretory vesicles
8
plasma membrane
8
nps
6
retention clearance
4
clearance drug-loaded
4
nanoparticles astrocytes
4
astrocytes electrophysiological
4

Similar Publications

Objective: Boron Neutron Capture Therapy (BNCT) is a novel precision radiotherapy. The key to BNCT application lies in the effective targeting and retention of the boron-10 (B) carrier. Among the various compounds studied in clinical settings, 4-boronophenylalanine (BPA) become the most prevalent one currently.

View Article and Find Full Text PDF

Acute myocardial infarction (MI) remains a leading cause of mortality worldwide, with inflammatory and reparative phases playing critical roles in disease progression. Currently, there is a pressing need for imaging techniques to monitor immune cell infiltration and inflammation activity during these phases. We developed a novel probe, Tc-HYNIC-mAb, utilizing a monoclonal antibody that targets the voltage-gated potassium channel 1.

View Article and Find Full Text PDF

Background: Implementation and hybrid effectiveness-implementation trials aspire to speed the translation of science into practice by generating crucial evidence for improving the uptake of effective health interventions. By design, they pose unique recruitment and retention challenges due to their aims, units of analysis, and sampling plans, which typically require many clinical sites (i.e.

View Article and Find Full Text PDF

Background: Most young adults with perinatal HIV (PHIV) transition from pediatric or adolescent to adult clinical care. Although guidelines to increase transition success have been recommended, we know little about uptake of these guidelines, particularly by adult care clinics.

Methods: We administered web-based surveys to adult care providers of young adults with PHIV in Massachusetts to evaluate transition preparation and post-transition evaluation practices.

View Article and Find Full Text PDF

Antiretroviral therapy (ART) improves the quality of life for those living with the human immunodeficiency virus type one (HIV-1). However, poor compliance reduces ART effectiveness and leads to immune compromise, viral mutations, and disease co-morbidities. Here we develop a drug formulation in which a lipid-based nanoparticle (LBNP) carrying rilpivirine (RPV) is decorated with the C-C chemokine receptor type 5 (CCR5) targeting peptide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!