Advances of Long Noncoding RNAs-mediated Regulation in Reproduction.

Chin Med J (Engl)

Department of Clinical Laboratory, State Key Laboratory of Reproductive Medicine, Nanjing Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China.

Published: January 2018

Objective: Advances in genomics and molecular biology have led to the discovery of a large group of uncharacterized long noncoding RNAs (lncRNAs). Emerging evidence indicated that many lncRNAs function in multiple biological processes and its dysregulation often causes diseases. Recent studies suggested that almost all regulatory lncRNAs interact with biological macromolecules such as DNA, RNA, and protein. LncRNAs regulate gene expression mainly on three levels, including epigenetic modification, transcription, and posttranscription, through DNA methylation, histone modification, and chromatin remodeling. LncRNAs can also affect the development of diseases and therefore be used to diagnose and treat diseases. With new sequencing and microarray techniques, hundreds of lncRNAs involved in reproductive disorders have been identified, but their functions in these disorders are undefined.

Data Sources: This review was based on articles published in PubMed databases up to July 10, 2017, with the following keywords: "long noncoding RNAs", "LncRNA", "placentation", and "reproductive diseases".

Study Selection: Original articles and reviews on the topics were selected.

Results: LncRNAs widely participate in various physiological and pathological processes as a new class of important regulatory factors. In spermatogenesis, spermatocytes divide and differentiate into mature spermatozoa. The whole process is elaborately regulated by the expression of phase-specific genes that involve many strains of lncRNAs. Literature showed that lncRNA in reproductive cumulus cells may contribute to the regulation of oocyte maturation, fertilization, and embryo development.

Conclusions: LncRNA has been found to play a role in the development of reproduction. Meanwhile, we reviewed the studies on how lncRNAs participate in reproductive disorders, which provides a basis for the study of lncRNA in reproduction regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5776855PMC
http://dx.doi.org/10.4103/0366-6999.222337DOI Listing

Publication Analysis

Top Keywords

lncrnas
9
long noncoding
8
reproductive disorders
8
lncrnas participate
8
advances long
4
noncoding rnas-mediated
4
rnas-mediated regulation
4
regulation reproduction
4
reproduction objective
4
objective advances
4

Similar Publications

A mitochondria-to-nucleus regulation mediated by the nuclear-translocated mitochondrial lncRNAs.

PLoS Genet

January 2025

Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.

A bidirectional nucleus-mitochondria communication is essential for homeostasis and stress. By acting as critical molecules, the nuclear-encoded lncRNAs (nulncRNAs) have been implicated in the nucleus-to-mitochondria anterograde regulation. However, role of mitochondrial-derived lncRNAs (mtlncRNAs) in the mitochondria-to-nucleus retrograde regulation remains elusive.

View Article and Find Full Text PDF

Prostate cancer is the second most common type of cancer in male worldwide. Stromal-epithelial interaction is thought to have a major impact on cancer development and progression. Previous studies have shown that interaction via soluble factors lead to a reduction in the expression of xCT and AL122023.

View Article and Find Full Text PDF

Precise imaging of noncoding RNAs (ncRNAs) in specific organelles allows decoding of their functions at subcellular level but lacks advanced tools. Here we present a DNA-based nanobiotechnology for spatially selective imaging of ncRNA (e.g.

View Article and Find Full Text PDF

Our aim was to evaluate the regulation of messenger RNAs (mRNAs) and biological pathways by long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in ischemic stroke. We employed weighted gene co-expression network analysis (WGCNA) to construct two co-expression networks for mRNAs with circRNAs and lncRNAs, respectively, to investigate their association with ischemic stroke. We compared the overlap of mRNAs and biological pathways in the stroke-associated modules of the two networks.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!