The key factors to consider when designing microwave absorber materials for eradication of electromagnetic (EM) pollution are absorption of incident EM waves and good impedance matching. By keeping these things in mind, flexible microwave absorber composite films can be fabricated by simple gel casting techniques using reduced graphene oxide (RGO) and strontium ferrite (SF) in a poly(methyl methacrylate) (PMMA) matrix. SF nanoparticles are synthesized by the well known sol-gel method. Subsequently, reduced graphene oxide (RGO) and SF nanocomposite (RGOSF) are prepared through a chemical reduction method using hydrazine. The structure, morphology, chemical composition, thermal stability and magnetic properties of the nanocomposite are characterized in detail by various techniques. The SF particles are found to be nearly 500 nm and decorated on RGO sheets as revealed by field emission scanning electron microscopy and transmission electron microscopy analysis. Fourier transform infrared and and Raman spectroscopy clearly show the presence of SF in the graphene sheet by the lower peak positions. Finally, ternary polymer composites of RGO/SF/PMMA are prepared by an in situ polymerization method. Magnetic and dielectric studies of the composite reveal that the presence of RGO/SF/PMMA lead to polarization effects contributing to dielectric loss. Also, RGO surrounding SF provides a conductive network in the polymer matrix which is in turn responsible for the magnetic loss in the composite. Thus, the permittivity as well as the permeability of the composite can be controlled by an appropriate combination of RGO and SF in PMMA. More than 99% absorption efficiency is achieved by a suitable combination of magneto-dielectric coupling in the X-band frequency range by incorporating 9 wt% of RGO and 1 wt% of SF in the polymer matrix.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/aaa805 | DOI Listing |
J Mol Model
January 2025
College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, People's Republic of China.
Context: The rotating arc plasma technique for the synthesis of nitrogen-doped graphene capitalizes on the distinctive attributes of plasma, presenting a straightforward, efficient, and catalyst-free strategy for the production of nitrogen-doped graphene. However, experimental outcomes generally fail to elucidate the atomic-level mechanism behind this process. Our research utilizes molecular dynamics simulations to explore theoretically the formation of radicals during the plasma-driven reaction between methane (CH₄) and nitrogen (N₂).
View Article and Find Full Text PDFACS Nano
January 2025
Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
Solar desalination is one of the effective means to alleviate water scarcity, in which aerogel-like evaporators have attracted extensive attention in the field of efficient desalination. However, the current preparation methods for aerogels still mainly rely on high-cost solutions, such as freeze-drying or supercritical drying. Herein, a preparation scheme for aerogels that can be realized under atmospheric pressure conditions is reported.
View Article and Find Full Text PDFDalton Trans
January 2025
Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
Boriranes, highly strained three-membered cyclic organoboron heterocycles, have emerged as potential synthons for the synthesis of many organoboron species. However, the synthesis of boriranes with tricoordinate, sp-hybridised boron and tetracoordinate, sp-hybridised carbon atoms is very challenging owing to their high Lewis acidity. Herein we describe the isolation of base-free triaminoboriranes from the room-temperature reaction of diaminoalkynes with an aminodistannylborane.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
The adoption of carbon capture, utilization, and storage (CCUS) technology is increasingly prevalent, driven by the global initiative to conserve energy and reduce emissions. Nevertheless, CCUS has the potential to induce corrosion in equipment, particularly in high-pressure environments containing carbon dioxide (CO). Therefore, anti-corrosion protection is necessary for the metal utilized for CO production and storage equipment.
View Article and Find Full Text PDFLangmuir
January 2025
Guangdong Provincial Key Laboratory of Thermal Management Engineering & Materials, National-Local Joint Engineering Laboratory of Functional Carbon Materials, Shenzhen 518055, China.
Alumina/polymer composites are conventional thermal interface materials widely used for heat dissipation. However, the interfacial thermal resistance (ITR) dominates the thermal conductivity (TC) of these composites, presenting a critical challenge. This study introduces erythritol as an innovative thermal bridge to effectively reduce the ITR by selectively locating it at the interfaces among alumina (AlO) particles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!