Burning of agricultural biomass generates polycyclic aromatic hydrocarbons (PAHs) including the carcinogen benzo[a]pyrene, of which the catabolism is primarily initiated by a ring-hydroxylating dioxygenase (RHD). This study explores catalytic site accessibility and its role in preferential catabolism of some PAHs over others. The genes flnA1f, flnA2f, flnA3, and flnA4, encoding the oxygenase α and β subunits, ferredoxin, and ferredoxin reductase, respectively, of the RHD enzyme complex (FlnA) were cloned from Sphingobium sp. FB3 and coexpressed in E. coli BL21. The FlnA effectively transformed fluoranthene but not benzo[a]pyrene. Substitution of the bulky phenylalanine-223 by leucine reduces the steric constraint in the substrate entrance to make the catalytic site of FlnA more accessible to large substrates, as visualized by 3D modeling, and allows the FlnA mutant to efficiently transform benzo[a]pyrene. Accessibility of the catalytic site to PAHs is a mechanism of RHD substrate specificity. The results shed light on why some PAHs are more recalcitrant than others.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.7b05018DOI Listing

Publication Analysis

Top Keywords

catalytic site
16
phenylalanine-223 leucine
8
ring-hydroxylating dioxygenase
8
sphingobium fb3
8
accessibility catalytic
8
mutation phenylalanine-223
4
leucine enhances
4
enhances transformation
4
benzo[a]pyrene
4
transformation benzo[a]pyrene
4

Similar Publications

The study was conducted to detect the occurrence and phenotypic resistance pattern of ESBL-producing Enterobacteriaceae in livestock using docking based analysis to reveal the classes of antibiotics against which ESBL-producers are active. Rectal swabs from healthy cattle (n=100), goats (n=88), pigs (n=66) were collected from backyard farms in Andaman and Nicober island (India). In total, 304 isolates comprising E.

View Article and Find Full Text PDF

SAMHD1 shapes deoxynucleotide triphosphate homeostasis by interconnecting the depletion and biosynthesis of different dNTPs.

Nat Commun

January 2025

Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA.

SAMHD1 is a dNTPase that impedes replication of HIV-1 in myeloid cells and resting T lymphocytes. Here we elucidate the substrate activation mechanism of SAMHD1, which involves dNTP binding at allosteric sites and transient tetramerization. Our findings reveal that tetramerization alone is insufficient to promote dNTP hydrolysis; instead, the activation mechanism requires an inactive tetrameric intermediate with partially occupied allosteric sites.

View Article and Find Full Text PDF

Nanozymes are next generation of enzyme mimics. Due to the lack of activity descriptors, most nanozymes were discovered through trial-and-error strategies or by accident. While eg occupancy in an octahedral crystal field was proven as an effective descriptor, the t2 in a tetrahedral crystal field has rarely been explored.

View Article and Find Full Text PDF

Enhancing Catalytic Removal of Autoexhaust Soot Particles via the Modulation of Interfacial Oxygen Vacancies in Cu/CeO Catalysts.

Environ Sci Technol

January 2025

State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China.

The purification efficiency of autoexhaust carbon strongly depends on the heterogeneous interface structure between active metal and oxide, which can modulate the local electronic structure of defect sites to promote the activation of reactant molecules. Herein, the high-dispersion CuO clusters supported on the well-defined CeO nanorods were prepared using the complex deposition slow method. The formation of heteroatomic Cu-O-Ce interfacial structural units as active sites can capture electrons to achieve activation of the NO and O molecules.

View Article and Find Full Text PDF

Pyridoxal 5'-phosphate (PLP)-dependent enzymes are involved in many cellular processes and possess unequalled catalytic versatility. Rational design through site-directed mutagenesis is a powerful strategy for creating tailor-made enzymes for a wide range of biocatalytic applications. PLP-dependent methionine γ-lyase (MGL), which degrades sulfur-containing amino acids, is an encouraging enzyme for many therapeutic purposes - from combating bacterial resistant strains and fungi to antitumor activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!