Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Most biosensors relying on antibodies as recognition elements fail in harsh environment conditions such as elevated temperatures, organic solvents, or proteases because of antibody denaturation, and require strict storage conditions with defined shelf life, thus limiting their applications in point-of-care and resource-limited settings. Here, a metal-organic framework (MOF) encapsulation is utilized to preserve the biofunctionality of antibodies conjugated to nanotransducers. This study investigates several parameters of MOF coating (including growth time, surface morphology, thickness, and precursor concentrations) that determine the preservation efficacy against different protein denaturing conditions in both dry and wet environments. A plasmonic biosensor based on gold nanorods as the nanotransducers is employed as a model biodiagnostic platform. The preservation efficacy attained through MOF encapsulation is compared to two other commonly employed materials (sucrose and silk fibroin). The results show that MOF coating outperforms sucrose and silk fibroin coatings under several harsh conditions including high temperature (80 °C), dimethylformamide, and protease solution, owing to complete encapsulation, stability in wet environment and ease of removal at point-of-use by the MOF. We believe this study will broaden the applicability of this universal approach for preserving different types of on-chip biodiagnostic reagents and biosensors/bioassays, thus extending the benefits of advanced diagnostic technologies in resource-limited settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5825292 | PMC |
http://dx.doi.org/10.1021/acssensors.7b00762 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!