A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Adiponectin Homolog Osmotin Enhances Neurite Outgrowth and Synaptic Complexity via AdipoR1/NgR1 Signaling in Alzheimer's Disease. | LitMetric

The Adiponectin Homolog Osmotin Enhances Neurite Outgrowth and Synaptic Complexity via AdipoR1/NgR1 Signaling in Alzheimer's Disease.

Mol Neurobiol

Division of Life Science and Applied Life Science (BK 21 plus), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea.

Published: August 2018

Alzheimer's disease is a major neurodegenerative disease characterized by memory loss and cognitive deficits. Recently, we reported that osmotin, which is a homolog of adiponectin, improved long-term potentiation and cognitive functions in Alzheimer's disease mice. Several lines of evidence have suggested that Nogo-A and the Nogo-66 receptor 1 (NgR1), which form a complex that inhibits long-term potentiation and cognitive function, might be associated with the adiponectin receptor 1 (AdipoR1), which is a receptor for osmotin. Here, we explore whether osmotin's effects on long-term potentiation and memory function are associated with NgR1 signaling via AdipoR1 in Alzheimer's disease. Osmotin reduced the expression of NgR1 without affecting Nogo-A expression. Furthermore, osmotin inhibited NgR1 signaling by prohibiting the formation of the Nogo-A and NgR1 ligand-receptor complex, resulting in enhanced neurite outgrowth; these effects disappeared in the presence of AdipoR1 interference. In addition, osmotin increased the expression of the pre- and postsynaptic markers synaptophysin and PSD-95, as well as the activation of the memory-associated markers AMPA receptor and CREB; these effects occurred in an AdipoR1- and NgR1-dependent manner. Osmotin was also found to enhance dendritic complexity and spine density in the hippocampal region of Alzheimer's disease mouse brains. These results suggest that osmotin can enhance neurite outgrowth and synaptic complexity through AdipoR1 and NgR1 signaling, implying that osmotin might be an effective therapeutic agent for Alzheimer's disease and that AdipoR1 might be a crucial therapeutic target for neurodegenerative diseases such as Alzheimer's.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-017-0847-1DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
24
neurite outgrowth
12
long-term potentiation
12
ngr1 signaling
12
osmotin
9
outgrowth synaptic
8
synaptic complexity
8
potentiation cognitive
8
function associated
8
osmotin enhance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!