Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: Network is unreachable
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
NMDA receptors (NMDARs) play a key role in synaptic plasticity and excitotoxicity. Subtype-specific role of NMDAR in neural disorders is an emerging area. Recent studies have revealed that mutations in NMDARs are a cause for epilepsy. Hippocampus is a known focal point for epilepsy. In hippocampus, expression of the NMDAR subtypes GluN1/GluN2A and GluN1/GluN2B is temporally regulated. However, the pharmacological significance of these subtypes is not well understood in epileptic context/models. To investigate this, epilepsy was induced in hippocampal slices by the application of artificial cerebrospinal fluid that contained high potassium but no magnesium. Epileptiform events (EFEs) were recorded from the CA1 and DG areas of hippocampus with or without subtype-specific antagonists. Irrespective of the age group, CA1 and DG showed epileptiform activity. The NMDAR antagonist AP5 was found to reduce the number of EFEs significantly. However, the application of subtype-specific antagonists (TCN 201 for GluN1/GluN2A and Ro 25-69811 for GluN1/GluN2B) revealed that EFEs had area-specific and temporal components. In slices from neonates, EFEs in CA1 were effectively reduced by Ro 25-69811, but were largely insensitive to TCN 201. In contrast, EFEs in DG were equally sensitive to both of the subtype-specific antagonists. However, the differential sensitivity for the antagonists observed in neonates was absent in later developmental stages. The study provides a functional insight into the NMDAR subtype-dependent contribution of EFEs in hippocampus of young rats, which may have implications in treating childhood epilepsy and avoiding unnecessary side effects of broad spectrum antagonists.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12017-018-8477-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!