High-resolution imaging of optical resonator modes is a key step in the development and characterization of nanophotonic devices. Many sub-wavelength mode-imaging techniques have been developed using optical and electron beam excitation-each with its own limitations in spectral and spatial resolution. Here, we report a 2D imaging technique using a pulsed, low-energy focused ion beam of Li to probe the near-surface fields inside photonic resonators. The ion beam locally modifies the resonator structure, causing temporally varying spectroscopic shifts of the resonator. We demonstrate this imaging technique on several optical modes of silicon microdisk resonators by rastering the ion beam across the disk surface and extracting the maximum mode shift at the location of each ion pulse. A small shift caused by ion beam heating is also observed and is independently extracted to directly measure the thermal response of the device. This technique enables visualization of the splitting of degenerate modes into spatially-resolved standing waves and permits persistent optical mode editing. Ion beam probing enables minimally perturbative, imaging of nanophotonic devices with high resolution and speed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766004 | PMC |
http://dx.doi.org/10.1364/OPTICA.4.001444 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria 21531, Egypt; Work Station of Science and Technique for Post-doctoral in Sugar Beet Institute Afliated to Heilongjiang University, 74 Xuefu Road, Harbin 150000, Heilongjiang, China.
Ion beam mutagenesis is an advanced technique capable of inducing substantial changes in plants, resulting in noticeable alterations in their growth. However, the precise molecular mechanisms underlying the effects of radiation on soybeans remain unclear. This study investigates the impact of ionizing radiation on soybean development through a comprehensive approach that integrates transcriptomics and metabolomics.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Materials Science and Engineering, University of Texas Dallas 800 W Campbell Rd Richardson TX 75080 USA
Although the Rare Earth (RE)FeB type magnets were invented in the 1980s and are widely used worldwide. Yet, the phase formation and dissolution mechanisms are still not crystal clear. The reaction dynamics between rare earth elements (REE) and the iron-enriched matrix are essential to understanding the formation of hard magnetic REE-Fe-B phase or, conversely, phase dissociation and performance degeneration.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
Upon invasion into the host cell, a subset of bacterial pathogens resides exclusively in the cytosol. While previous research revealed how they reshape the plasma membrane during invasion, subvert the immune response, and hijack cytoskeletal dynamics to promote their motility, it was unclear if these pathogens also interacted with the organelles in this crowded intracellular space. Here, we examined if the obligate intracellular pathogen Rickettsia parkeri interacts with the endoplasmic reticulum (ER), a large and dynamic organelle spread throughout the cell.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
High degree of fluorination for ether electrolytes has resulted in improved cycling stability of lithium metal batteries due to stable solid electrolyte interphase (SEI) formation and good oxidative stability. However, the sluggish ion transport and environmental concerns of high fluorination degree drive the need to develop less fluorinated structures. Here, we depart from the traditional ether backbone and introduce bis(2-fluoroethoxy)methane (F2DEM), featuring monofluorination of the acetal backbone.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern Weg 5 HPK, 8093, Zurich, Switzerland.
The Sun drives Earth's energy systems, influencing weather, ocean currents, and agricultural productivity. Understanding solar variability is critical, but direct observations are limited to 400 years of sunspot records. To extend this timeline, cosmic ray-produced radionuclides like C in tree-rings provide invaluable insights.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!