Interactions between co-existing microorganisms deeply affect the physiology of the involved organisms and, ultimately, the function of the ecosystem as a whole. Copiotrophic Alteromonas are marine gammaproteobacteria that thrive during the late stages of phytoplankton blooms in the marine environment and in laboratory co-cultures with cyanobacteria such as Trichodesmium. The response of this heterotroph to the sometimes rapid and transient changes in nutrient supply when the phototroph crashes is not well understood. Here, we isolated and sequenced the strain Alteromonas macleodii str. Te101 from a laboratory culture of Trichodesmium erythraeum IMS101, yielding a chromosome of 4.63 Mb and a single plasmid of 237 kb. Increasing salinities to ≥43 ppt inhibited the growth of Trichodesmium but stimulated growth of the associated Alteromonas. We characterized the transcriptomic responses of both microorganisms and identified the complement of active transcriptional start sites in Alteromonas at single-nucleotide resolution. In replicate cultures, a similar set of genes became activated in Alteromonas when growth rates of Trichodesmium declined and mortality was high. The parallel activation of fliA, rpoS and of flagellar assembly and growth-related genes indicated that Alteromonas might have increased cell motility, growth, and multiple biosynthetic activities. Genes with the highest expression in the data set were three small RNAs (Aln1a-c) that were identified as analogs of the small RNAs CsrB-C in E. coli or RsmX-Z in pathogenic bacteria. Together with the carbon storage protein A (CsrA) homolog Te101_05290, these RNAs likely control the expression of numerous genes in responding to changes in the environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5864184PMC
http://dx.doi.org/10.1038/s41396-017-0034-4DOI Listing

Publication Analysis

Top Keywords

alteromonas macleodii
8
macleodii str
8
str te101
8
small rnas
8
alteromonas
7
trichodesmium
5
benefit decline
4
decline primary
4
primary transcriptome
4
transcriptome alteromonas
4

Similar Publications

Article Synopsis
  • The study examines how a certain type of microbe, when exposed to periods of darkness, can develop tolerance through co-cultivation with a heterotrophic microbe.
  • Results show that the dark-tolerant microbes became larger, had less chlorophyll, and shifted from photosynthesis to respiration, while the heterotroph adapted by using more organic acids instead of sugars.
  • The research highlights the enhanced metabolic exchange between the two microbes, indicating a strong coupling that helps them survive in low-light conditions.
View Article and Find Full Text PDF

Naturally occurring 6-pentyl-2H-pyran-2-one and its synthetic analogues greatly inhibit the settlement of Amphibalanus amphitrite cyprids and the growth and biofilm formation of marine bacteria. To optimize the antifouling activities of pyrone derivatives, this study designed pyrone analogues by modifying functional groups, such as the benzyl group, cyclopentane, and halides, substituted on both sides of a pyrone. The antifouling effects of the synthesized pyrone derivatives were subsequently evaluated against five marine biofilm-forming bacteria, Loktanella hongkongensis, Staphylococcus cohnii, S.

View Article and Find Full Text PDF

Iron(III) cross-linked hydrogels based on Alteromonas macleodii Mo 169 exopolysaccharide.

Int J Biol Macromol

August 2024

Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal. Electronic address:

Recently, polysaccharide-based hydrogels crosslinked with the trivalent iron cation have attracted interest due to their remarkable properties that include high mechanical stability, stimuli-responsiveness, and enhanced absorptivity. In this study, a Fe crosslinked hydrogel was prepared using the biocompatible extracellular polysaccharide (EPS) secreted by the marine bacterium Alteromonas macleodii Mo169. Hydrogels with mechanical strengths (G') ranging from 0.

View Article and Find Full Text PDF

Degradation of organic mercury in high salt environments by a marine aerobic bacterium Alteromonas macleodii KD01.

Bioresour Technol

June 2024

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Mercury (Hg), particularly organic mercury, poses a global concern due to its pronounced toxicity and bioaccumulation. Bioremediation of organic mercury in high-salt wastewater faces challenges due to the growth limitations imposed by elevated Cl and Na concentrations on microorganisms. In this study, an isolated marine bacterium Alteromonas macleodii KD01 was demonstrated to degrade methylmercury (MeHg) efficiently in seawater and then was applied to degrade organic mercury (MeHg, ethylmercury, and thimerosal) in simulated high-salt wastewater.

View Article and Find Full Text PDF

Argonautes are an evolutionary conserved family of programmable nucleases that identify target nucleic acids using small guide oligonucleotides. In contrast to eukaryotic Argonautes (eAgos) that act on RNA, most studied prokaryotic Argonautes (pAgos) recognize DNA targets. Similarly to eAgos, pAgos can protect prokaryotic cells from invaders, but the biogenesis of guide oligonucleotides that confer them specificity to their targets remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!