Jietacins, an azoxy antibiotic class of chemicals, were isolated from the culture broth of Streptomyces sp. KP-197. They have a unique structural motif, including a vinyl azoxy group and a long acyclic aliphatic chain, which is usually branched but non-branched in the case of jietacin C. During a drug discovery program, we found that jietacins display potent anthelmintic activity against parasitic nematodes and that jietacin A has a moderate or low acute toxicity (LD > 300 mg/kg) and no mutagenic potential in a mini Ames screen. This suggests that jietacins have potential for drug discovery research. In order to create a novel anthelmintic agent, we performed design, synthesis, and biological evaluation of jietacin derivatives against parasitic nematodes. Of these derivatives, we found that a fully synthesized simplified derivative exhibited better anthelmintic activity against three parasitic nematodes than natural jietacins. In addition, it had a better efficacy in vivo through oral administration against a mouse nematode. This indicated that the azoxy motif could prove useful as a template for anthelmintic discovery, possibly creating a class of anthelmintic with novel skeletons, a potential new mode of action, and providing further insight for rational drug design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2017.12.031 | DOI Listing |
A five-year-old male presented with small bowel obstruction and a worm bolus on a plain abdominal radiograph. Peritonism and acidosis prompted laparotomy after a short period of resuscitation. At surgery a worm bolus had caused a small bowel volvulus with a segment of necrosis that was successfully managed by detorsion and resection.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Plant Biochemistry and Physiology, Bielefeld University, Bielefeld, Germany.
The network of antagonistic, neutral, and synergistic interactions between (micro)organisms has moved into the focus of current research, since in agriculture, this knowledge can help to develop efficient biocontrol strategies. Applying the nematophagous fungus as biocontrol agent to manage the root-knot nematode is a highly promising strategy. To gain new insight into the systemic response of plants to a plant-parasitic nematode and a nematophagous fungus, was inoculated with and/or and subjected to transcriptome and metabolome analysis of leaves.
View Article and Find Full Text PDFSci Data
January 2025
Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France.
Root-knot nematodes (RKN) of the genus Meloidogyne are obligatory plant endoparasites that cause substantial economic losses to agricultural production and impact the global food supply. These plant parasitic nematodes belong to the most widespread and devastating genus worldwide, yet few measures of control are available. The most efficient way to control RKN is deployment of resistance genes in plants.
View Article and Find Full Text PDFSci Data
January 2025
Shaanxi Key Laboratory of Plant Nematology, Bio-Agriculture Institute of Shaanxi, Xi'an, China.
Ditylenchus destructor, commonly known as the potato rot nematode, is a significant plant-parasitic pathogen affecting over 120 plant species globally. Effective control measures for D. destructor are limited, underscoring the need a high-quality reference genome to understand its pathogenic mechanisms.
View Article and Find Full Text PDFCarbohydr Res
January 2025
Institut für Parasitologie, Veterinärmedizinische Universität, A-1210, Wien, Austria. Electronic address:
Nematodes, commonly known as roundworms, are among the most prevalent and diverse multicellular organisms on Earth, belonging to the large phylum Nematoda. In addition to free-living species, many nematodes are parasitic, infecting plants, animals, and humans. Nematodes possess a wide array of genes responsible for carbohydrate metabolism and glycosylation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!