Olivines are divalent orthosilicates with important geologic, biological, and industrial significance and are typically comprised of mixtures of Mg and Fe ranging from forsterite (MgSiO) to fayalite (FeSiO). Investigating the role of Fe(II) in olivine reactivity requires the ability to synthesize olivines that are nanometer-sized, have different percentages of Mg and Fe, and have good bulk and surface purity. This article demonstrates a new method for synthesizing nanosized fayalite and Mg-Fe mixture olivines.First, carbonaceous precursors are generated from sucrose, PVA, colloidal silica, Mg, and Fe. Second, these precursors are calcined in air to burn carbon and create mixtures of Fe(III)-oxides, forsterite, and SiO. Finally, calcination in reducing CO-CO gas buffer leads to Fe(II)-rich olivines. XRD, Mössbauer, and IR analyses verify good bulk purity and composition. XPS indicates that surface iron is in its reduced Fe(II) form, and surface Si is consistent with olivine. SEM shows particle sizes predominately between 50 and 450 nm, and BET surface areas are 2.8-4.2 m/g. STEM HAADF analysis demonstrates even distributions of Mg and Fe among the available M1 and M2 sites of the olivine crystals. These nanosized Fe(II)-rich olivines are suitable for laboratory studies with in situ probes that require mineral samples with high reactivity at short timescales.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2018.01.036 | DOI Listing |
The detection of lead ions (Pb) is crucial due to its harmful effects on health and the environment. In this article, what we believe to be a novel dielectric-metal hybrid structure localized surface plasmon resonance (LSPR) sensor for ultra-trace detection of Pb is proposed, featuring a zinc sulfide layer, silver nanodisks (Ag-disks), and graphene oxide (GO) covering the Ag-disks. The sensor works by detecting the variation of gold nanoparticles (AuNPs) on its surface when Pb cleaves a substrate strand linked to a DNAzyme, causing the AuNPs modified on the substrate strand to disperse.
View Article and Find Full Text PDFQuantitative measurements produced by mass spectrometry proteomics experiments offer a direct way to explore the role of proteins in molecular mechanisms. However, analysis of such data is challenging due to the large proportion of missing values. A common strategy to address this issue is to utilize an imputed dataset, which often introduces systematic bias into down-stream analyses if the imputation errors are ignored.
View Article and Find Full Text PDFWorld J Clin Cases
January 2025
Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China.
In this editorial, we have commented on the article that has been published in the recent issue of . The authors have described a case of unilateral thyroid cyst and have opined that the acute onset of infection may be linked to diabetes mellitus (DM). We have focused on the role of nutrition in the association between DM and infection.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Physics and Natural Science Research Institute, University of Seoul, Seoul 02504, Republic of Korea.
Bulk n-type SrTiO (STO) has long been known to possess a superconducting ground state at an exceptionally dilute carrier density. This has raised questions about the applicability of the BCS-Eliashberg paradigm with its underlying adiabatic assumption. However, recent experimental reports have set the pairing gap to the critical temperature (Tc) ratio at the BCS value for superconductivity in Nb-doped STO, even though the adiabaticity condition the BCS pairing requires is satisfied over the entire superconducting dome only by the lowest branch of optical phonons.
View Article and Find Full Text PDFGels
December 2024
Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China.
Developing an exceptional reaction medium with high promotion efficiency, desirable biodegradability and good recyclability is necessary for hydrate-based methane storage. In this work, a kind of eco-friendly hydrogel, polyvinyl alcohol-co-acrylic acid (PVA-co-PAA), was utilized to absorb dilute sodium p-styrenesulfonate (SS) solution, for constructing a hybrid reaction medium for methane hydrate formation. Hydrogels or dilute SS solutions (1-4 mmol L) had weak or even no promoting effects on hydrate formation kinetics, while the combination of them could synergistically promote methane hydrate formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!