Background: Phycodnaviruses are widespread algae-infecting large dsDNA viruses and presently contain six genera: Chlorovirus, Prasinovirus, Prymnesiovirus, Phaeovirus, Coccolithovirus and Raphidovirus. The members in Prasinovirus are identified as marine viruses due to their marine algal hosts, while prasinovirus freshwater relatives remain rarely reported.
Results: Here we present the complete genomic sequence of a novel phycodnavirus, Dishui Lake Phycodnavirus 1 (DSLPV1), which was assembled from Dishui Lake metagenomic datasets. DSLPV1 harbors a linear genome of 181,035 bp in length (G + C content: 52.7%), with 227 predicted genes and 2 tRNA encoding regions. Both comparative genomic and phylogenetic analyses indicate that the freshwater algal virus DSLPV1 is closely related to the members in Prasinovirus, a group of marine algae infecting viruses. In addition, a complete eukaryotic histone H3 variant was identified in the genome of DSLPV1, which is firstly detected in phycodnaviruses and contributes to understand the interaction between algal virus and its eukaryotic hosts.
Conclusion: It is in a freshwater ecosystem that a novel Prasinovirus-related viral complete genomic sequence is discovered, which sheds new light on the evolution and diversity of the algae infecting Phycodnaviridae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5769502 | PMC |
http://dx.doi.org/10.1186/s12864-018-4432-4 | DOI Listing |
Res Vet Sci
May 2021
Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark. Electronic address:
The laboratory mouse strain C57BL/6 is widely used as an animal model for various applications. It is becoming increasingly clear that the bacterial enteric community highly influences the phenotype. Eukaryotic viruses represent a sparsely investigated member of the enteric microbiome that might also affect the phenotype.
View Article and Find Full Text PDFBMC Genomics
January 2018
College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
Background: Phycodnaviruses are widespread algae-infecting large dsDNA viruses and presently contain six genera: Chlorovirus, Prasinovirus, Prymnesiovirus, Phaeovirus, Coccolithovirus and Raphidovirus. The members in Prasinovirus are identified as marine viruses due to their marine algal hosts, while prasinovirus freshwater relatives remain rarely reported.
Results: Here we present the complete genomic sequence of a novel phycodnavirus, Dishui Lake Phycodnavirus 1 (DSLPV1), which was assembled from Dishui Lake metagenomic datasets.
Environ Microbiol
March 2014
INRA, UMR CARRTEL, 75 Avenue de Corzent, 74203, Thonon-les-Bains cx, France.
Little is known about Phycodnavirus (or double-stranded DNA algal virus) diversity in aquatic ecosystems, and virtually, no information has been provided for European lakes. We therefore conducted a 1-year survey of the surface waters of France's two largest lakes, Annecy and Bourget, which are characterized by different trophic states and phytoplanktonic communities. We found complementary and contrasting diversity of phycodnavirus in the lakes based on two genetic markers, the B family DNA polymerase-encoding gene (polB) and the major capsid protein-encoding gene (mcp).
View Article and Find Full Text PDFISME J
May 2011
Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road N, Mississauga, Ontario, Canada.
Using quantitative PCR, the abundances of six phytoplankton viruses DNA polymerase (polB) gene fragments were estimated in water samples collected from Lake Ontario, Canada over 26 months. Four of the polB fragments were most related to marine prasinoviruses, while the other two were most closely related to cultivated chloroviruses. Two Prasinovirus-related genes reached peak abundances of >1000 copies ml(-1) and were considered 'high abundance', whereas the other two Prasinovirus-related genes peaked at abundances <1000 copies ml(-1) and were considered 'low abundance'.
View Article and Find Full Text PDFEnviron Microbiol
November 2009
Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK.
Ostreococcus tauri virus (OtV-1) is a large double-stranded DNA virus and a prospective member of the family Phycodnaviridae, genus Prasinovirus. OtV-1 infects the unicellular marine green alga O. tauri, the smallest known free-living eukaryote.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!