Significance: NAD is an essential redox cofactor in cellular metabolism and has emerged as an important regulator of a wide spectrum of disease conditions, most notably, cancers. As such, various strategies targeting NAD synthesis in cancers are in clinical trials. Recent Advances: Being a substrate required for the activity of various enzyme families, especially sirtuins and poly(adenosine diphosphate [ADP]-ribose) polymerases, NAD-mediated signaling plays an important role in gene expression, calcium release, cell cycle progression, DNA repair, and cell proliferation. Many strategies exploring the potential of interfering with NAD metabolism to sensitize cancer cells to achieve anticancer benefits are highly promising, and are being pursued.

Critical Issues: With the multifaceted roles of NAD in cancer, it is important to understand how cellular processes are reliant on NAD. This review summarizes how NAD metabolism regulates various pathophysiological processes in cancer, and how this knowledge can be exploited to devise effective anticancer therapies in clinical settings.

Future Directions: In line with the redundant pathways that facilitate NAD metabolism, further studies should comprehensively understand the roles of the various NAD-synthesizing as well as NAD-utilizing biomolecules to understand its true potential in cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ars.2017.7478DOI Listing

Publication Analysis

Top Keywords

nad metabolism
12
nad
8
regulation cancer
4
cancer cancer-related
4
cancer-related genes
4
genes nad
4
nad significance
4
significance nad
4
nad essential
4
essential redox
4

Similar Publications

Characterization of a novel D-sorbitol dehydrogenase from Faunimonas pinastri A52C2.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.

The enzyme D-sorbitol dehydrogenase (SLDH) facilitates the conversion of D-sorbitol to L-sorbose. While current knowledge of this enzyme class predominantly centers on Gluconobacter oxydans, the catalytic properties of enzymes from alternative sources, particularly their substrate specificity and coenzyme dependency, remain ambiguous. In this investigation, we conducted BLASTp analysis and screened out a novel SLDH (Fpsldh) from Faunimonas pinastri A52C2.

View Article and Find Full Text PDF

Background: The pathomechanism of blast traumatic brain injury (TBI) and blunt TBI is different. In blast injury, evidence indicates that a single blast exposure can often manifest long-term neurological impairments. However, its pathomechanism is still elusive, and treatments have been symptomatic.

View Article and Find Full Text PDF

The polymerase gamma (POLG) gene mutation is associated with mitochondria and metabolism disorders, resulting in heterogeneous responses to immunological activation and posing challenges for mitochondrial disease therapy. Optical metabolic imaging captures the autofluorescent signal of two coenzymes, NADH and FAD, and offers a label-free approach to detect cellular metabolic phenotypes, track mitochondria morphology, and quantify metabolic heterogeneity. In this study, fluorescence lifetime imaging (FLIM) of NAD(P)H and FAD revealed that POLG mutator macrophages exhibit a decreased NAD(P)H lifetime, and optical redox ratio compared to the wild-type macrophages, indicating an increased dependence on glycolysis.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with no targeted treatments currently available. TNBC cells participate in metabolic symbiosis, a process that optimizes tumor growth by balancing metabolic processes between glycolysis and oxidative phosphorylation through increased activity by the enzyme lactate dehydrogenase B (LDHB). Metabolic symbiosis allows oxidative cancer cells to function at a similar rate as glycolytic cancer cells, increasing overall metabolic activity and proliferation.

View Article and Find Full Text PDF

Aging is accompanied by a decline in neovascularization potential and increased susceptibility to ischemic injury. Here, we confirm the age-related impaired neovascularization following ischemic leg injury and impaired angiogenesis. The age-related deficits in angiogenesis arose primarily from diminished EC proliferation capacity, but not migration or VEGF sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!