Polygonum multiflorum Thunb. has been used widely in East Asia in treatment of diseases associated with aging. However, there are many reports referred to the toxicity of P. multiflorum, especially for liver adverse reactions. The toxicity of it is caused by over dosage or by the herb itself remains unclear. The aim of this study was to study the toxicity of different extractions, components and constituents of P. multiflorum, which were assessed in zebrafish embryos. Firstly, the difference of extracting solvent to the toxicity of P. multiflorum was researched to probe the influence of usages to the safety of P. multiflorum. The toxicity of 70% EtOH extract is considerably higher than that of other extracts. Secondly, 70% EtOH extract was subjected to macroporous resin (DM-8) eluting with a gradient of water and EtOH (HO, 25% EtOH, 40% EtOH and 95% EtOH) to give four components (A-D). The toxicity of the component (D) showed higher than the other components (A-C). Thus, the component (D) was taken more attentions to research. Lastly, study on the chemical constituents of the component (D), 27 compounds, including 7 anthraquinones (1-7), 8 stilbenes (8-15), 7 anthrones (16-22), 3 cinnamic acid amides (23-25), 2 naphthols (26-27) were isolated and assessed in zebrafish embryos. Compounds 1-3, 16-22 and 26-27 showed severe toxicity against the zebrafish embryos while other compounds, such as stilbenes, showed no obvious toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2018.01.033 | DOI Listing |
Environ Sci Technol
January 2025
School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
Safer chemical alternatives to bisphenol (BP) have been a major pursuit of modern green chemistry and toxicology. Using a chemical similarity-based approach, it is difficult to identify minor structural differences that contribute to the significant changes of toxicity. Here, we used omics and computational toxicology to identify chemical features associated with BP analogue-induced embryonic toxicity, offering valuable insights to inform the design of safer chemical alternatives.
View Article and Find Full Text PDFCells
December 2024
Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy.
Zebrafish () have emerged as a valuable model organism for investigating musculoskeletal development and the pathophysiology of associated diseases. Key genes and biological processes in zebrafish that closely mirror those in humans, rapid development, and transparent embryos make zebrafish ideal for the in vivo studies of bone and muscle formation, as well as the molecular mechanisms underlying musculoskeletal disorders. This review focuses on the utility of zebrafish in modeling various musculoskeletal conditions, with an emphasis on bone diseases such as osteoporosis and osteogenesis imperfecta, as well as muscle disorders like Duchenne muscular dystrophy.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2025
Department of Chemistry, Tamkang University, 151, Yingzhuan Road, Danshui Dist., New Taipei City 25137, Taiwan. Electronic address:
This study aimed to compare and evaluate the growth inhibition effects of eight previously synthesized compounds, cis-3,4-diaryl-α-methylene-γ-butyrolactams (compounds 1-8), on two human renal carcinoma cell (RCC) lines: CRL-1932 (rapid growth) and HTB-44 (slow growth). MTT assays and flow cytometry were conducted, revealing that compounds 5 and 6 had the potential to induce cell death in the slow-growing RCC cells (HTB-44), while compound 8 demonstrated effectiveness in both RCC lines (HTB-44 and CRL-1932). Additionally, a non-transformed HEK293 cell line and a transgenic zebrafish with a green fluorescent kidney Tg(wt1b:egfp) were used to assess the toxicities of compounds 5, 6, and 8.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China. Electronic address:
With the aid of radical and non-radical reactive species (RS), advanced oxidation processes can efficiently degrade emerging organic contaminants including antibiotics but may generate toxic transformation products (TPs). However, the detoxification capacity of popular RS has not been well elucidated. This study compared the detoxification of enrofloxacin (ENR) with three RS-dominated systems: O, SO+OH, OH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!