Radical centers close to protons are known to enhance their dissociation. Investigation of the generality of this radical enhanced deprotonation (RED-shift) phenomenon, and the kinds of structures in which it operates, are reported. The pKs for sulfinic, sulfonic, pentan-2,4-dione, and Meldrum's acid species, with adjacent radicals centered on C-, N-, and O atoms, were computed by a DFT method from free energies of deprotonation. All series showed significant RED-shifts that increased with the electronegativity of the radical center. The hugely negative pK obtained for a Meldrum's acid with an alkoxyl radical substituent showed it to belong to the superacid class. The ethyne unit was found to be uniquely effective at enhancing acidity and conducting RED-shifts through chains up to and beyond 20 atoms. These connector units enable a radical center to alter the pK of a spatially remote acidic group. RED-shifted species were characterized by conjugate radical anions displaying site exchange of spin with electronic charge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.7b11796 | DOI Listing |
J Am Chem Soc
December 2024
Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States.
Direct incorporation of malonate units into polymer backbones is a synthetic challenge. Herein, we report the alternating and controlled anionic copolymerization of epoxides and Meldrum's acid (MA) derivatives to access poly(alkyl malonates) using (-bis(salicylidene)phenylenediamine)AlCl and a tris(dialkylamino)cyclopropenium chloride cocatalyst. This unique copolymerization yields a malonate-containing repeat unit while releasing a small molecule upon MA-derivative ring-opening.
View Article and Find Full Text PDFJ Org Chem
December 2024
RayzeBio, Inc, 5505 Morehouse Drive, Suite 300, San Diego, California 92121, United States.
The standard protocol for Alloc group removal during peptide synthesis still presents limitations, including low reaction yields, -allylated byproducts, and the use of air-sensitive Pd(PPh). We addressed these challenges by developing a novel protocol using the air-stable Pd(PPh)Cl catalyst, Meldrum's acid (MA), and triethylsilane (TES-H). This combination ensured high yields, eliminated -allylated byproducts, and is compatible with automated synthesis.
View Article and Find Full Text PDFBiophys Chem
January 2025
Departamento de Química-Biológica, Universidade Regional do Cariri - URCA, Crato. 63105-000 Ceará, Brazil. Electronic address:
The misuse of antibiotics has led to an alarming increase in bacterial strains resistant to these drugs. Efflux pumps, which expel antibiotics from bacterial cells, have emerged as one of the key mechanisms of bacterial resistance. In the quest to combat and mitigate bacterial resistance, researchers have turned their attention to efflux pump inhibitors as a potential solution.
View Article and Find Full Text PDFJ Org Chem
November 2024
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
The synthesis of multifunctionalized dihydropyridinones from aldehydes and ketones involves at least a three-step process, making route shortening a challenging task, especially in achieving a one-pot four-component synthesis via aldehydes and ketones precondensation. Herein, we discovered a [1 + 2 + 1 + 2] four-component domino cyclization reaction, a novel concept in 4CRs with commercially available ketones and aldehydes, which by initially combining aldehydes and ketones with Meldrum's acid and ammonium acetate (NHOAc), respectively, they give dihydropyridones (>110 examples). This transformation features inexpensive additives and readily available starting materials, making it appropriate for rapid access to relevant pharmaceutical molecules containing dihydropyridinone-derived heterocycles.
View Article and Find Full Text PDFBMC Chem
August 2024
Department of Chemistry, Voronezh State University, Universitetskaya pl. 1, Voronezh, 394006, Russian Federation.
Currently, there is a growing interest in the synthesis of heterocyclic compounds containing hydroquinoline fragments. This surge can be attributed to the broad range of pharmaceutical and industrial applications that these compounds possess. In this study, the synthesis of both linear and fused heterocyclic systems that incorporate hydroquinoline fragments was described.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!