Intratumor heterogeneity is a key factor contributing to therapeutic failure and, hence, cancer lethality. Heterogeneous tumors show partial therapy responses, allowing for the emergence of drug-resistant clones that often express high levels of the receptor tyrosine kinase AXL. In melanoma, AXL-high cells are resistant to MAPK pathway inhibitors, whereas AXL-low cells are sensitive to these inhibitors, rationalizing a differential therapeutic approach. We developed an antibody-drug conjugate, AXL-107-MMAE, comprising a human AXL antibody linked to the microtubule-disrupting agent monomethyl auristatin E. We found that AXL-107-MMAE, as a single agent, displayed potent in vivo anti-tumor activity in patient-derived xenografts, including melanoma, lung, pancreas and cervical cancer. By eliminating distinct populations in heterogeneous melanoma cell pools, AXL-107-MMAE and MAPK pathway inhibitors cooperatively inhibited tumor growth. Furthermore, by inducing AXL transcription, BRAF/MEK inhibitors potentiated the efficacy of AXL-107-MMAE. These findings provide proof of concept for the premise that rationalized combinatorial targeting of distinct populations in heterogeneous tumors may improve therapeutic effect, and merit clinical validation of AXL-107-MMAE in both treatment-naive and drug-resistant cancers in mono- or combination therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nm.4472DOI Listing

Publication Analysis

Top Keywords

antibody-drug conjugate
8
braf/mek inhibitors
8
heterogeneous tumors
8
mapk pathway
8
pathway inhibitors
8
distinct populations
8
populations heterogeneous
8
inhibitors
5
axl-107-mmae
5
cooperative targeting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!