The patterning of silicon surfaces by organic molecules emerges as an original way to fabricate innovative nanoelectronic devices. In this regard, we have studied how a diamine, N,N,N',N'-tetramethylethylenediamine (TMEDA, (CH)N-[CH]-N(CH)), chelates the silicon dimers of the Si(001)-2 × 1 surface. Starting from very low coverage to surface saturation (at 300 K), we used real-time scanning tunneling microscopy (STM) in a scanning-while-dosing approach. The images show that the molecules can adopt two bonding configurations: the cross-trench (CT) configuration by bridging two adjacent dimer rows, and the end-bridge (EB) configuration by chelating two adjacent dimers in the same row. However, while CT dominates over EB at low coverage, the percentage of EB adducts steadily increases, until it becomes largely dominant at high molecular coverage. Above a critical coverage θ of ∼0.13 monolayer (ML), a sudden change in the molecular imprints is seen, likely due to a change in the tunneling conditions. The EB stapling of two adjacent dimers in a row via a dual-dative bond (as shown by XPS) is achieved efficiently by the TMEDA molecule with a very high chemical selectivity. The EB is a unique configuration in amine adsorption chemistry, as it leads to the formation of a pair of first-neighbor, doubly-occupied dangling bonds. Further reactivity of the EB site with other molecules remains to be explored, and possible reaction schemes are envisaged.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7nr06132cDOI Listing

Publication Analysis

Top Keywords

chelates silicon
8
silicon dimers
8
real-time scanning
8
scanning tunneling
8
tunneling microscopy
8
low coverage
8
adjacent dimers
8
dimers row
8
tertiary diamine
4
diamine molecule
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!