This study investigated the effect of carbohydrate (CHO) dose and composition on fuel selection during exercise, specifically exogenous and endogenous (liver and muscle) CHO oxidation. Ten trained males cycled in a double-blind randomized order on 5 occasions at 77% V˙O2max for 2 h, followed by a 30-min time-trial (TT) while ingesting either 60 g·h (LG) or 75 g·h C-glucose (HG), 90 g·h (LGF) or 112.5 g·h C-glucose- C-fructose ([2:1] HGF) or placebo. CHO doses met or exceed reported intestinal transporter saturation for glucose and fructose. Indirect calorimetry and stable mass isotope [ C] tracer techniques were utilized to determine fuel use. TT performance was 93% "likely/probable" to be improved with LGF compared with the other CHO doses. Exogenous CHO oxidation was higher for LGF and HGF compared with LG and HG (ES > 1.34, P < 0.01), with the relative contribution of LGF (24.5 ± 5.3%) moderately higher than HGF (20.6 ± 6.2%, ES = 0.68). Increasing CHO dose beyond intestinal saturation increased absolute (29.2 ± 28.6 g·h , ES = 1.28, P = 0.06) and relative muscle glycogen utilization (9.2 ± 6.9%, ES = 1.68, P = 0.014) for glucose-fructose ingestion. Absolute muscle glycogen oxidation between LG and HG was not significantly different, but was moderately higher for HG (ES = 0.60). Liver glycogen oxidation was not significantly different between conditions, but absolute and relative contributions were moderately attenuated for LGF (19.3 ± 9.4 g·h , 6.8 ± 3.1%) compared with HGF (30.5 ± 17.7 g·h , 10.1 ± 4.0%, ES = 0.79 & 0.98). Total fat oxidation was suppressed in HGF compared with all other CHO conditions (ES > 0.90, P = 0.024-0.17). In conclusion, there was no linear dose response for CHO ingestion, with 90 g·h of glucose-fructose being optimal in terms of TT performance and fuel selection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789655 | PMC |
http://dx.doi.org/10.14814/phy2.13555 | DOI Listing |
Front Vet Sci
December 2024
Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy.
Background: Recently, environmental pollution has become a significant concern for human, animal, and environmental health, fitting within the "One Health" framework. Among the various environmental contaminants, per- and polyfluoroalkyl substances (PFASs) have gathered substantial attention due to their persistence, bioaccumulation, and adverse health effects. This study aimed to compare the levels of 12 PFASs in the fur, liver, and muscle of wild roe deer to evaluate the feasibility of using fur as a non-invasive biomonitoring matrix.
View Article and Find Full Text PDFFront Vet Sci
December 2024
College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.
Excessive inorganic trace elements are added to livestock and poultry feed to meet the needs of animals, accompanied by frequent occurrence of excretion and gastrointestinal stress. Replacing inorganic trace elements with organic trace elements provides a promising solution to alleviate these problems. Therefore, this study aimed to assess the impact of replacing all inorganic trace elements (ITMs) in feed on the growth performance, meat quality, serum parameters, trace element metabolism, and gut microbiota of finishing pigs.
View Article and Find Full Text PDFMany of the 'hallmarks of aging' involve alterations in cellular and organismal metabolism. One pathway with the potential to impact several traditional markers of impaired function with aging is the PI3K/AKT metabolic pathway. Regulation of this pathway includes many aspects of cellular function, including protein synthesis, proliferation and survival, as well as many downstream targets, including mTOR and FOXOs.
View Article and Find Full Text PDFBackground: Type 2 Diabetes Mellitus (T2DM) is a significant public health burden. Emerging evidence links volatile organic compounds (VOCs), such as benzene to endocrine disruption and metabolic dysfunction. However, the effects of chronic environmentally relevant VOC exposures on metabolic health are still emerging.
View Article and Find Full Text PDFPolyunsaturated fatty acids (PUFAs) including omega-3 and omega-6 are obtained from diet and can be measured objectively in plasma or red blood cells (RBCs) membrane biomarkers, representing different dietary exposure windows. conversion of omega-3 and omega-6 PUFAs from short-to long-chain counterparts occurs via a shared metabolic pathway involving fatty acid desaturases and elongase. This analysis leveraged genome-wide association study (GWAS) summary statistics for RBC and plasma PUFAs, along with expression quantitative trait loci (eQTL) to estimate tissue-specific genetically predicted gene expression effects for delta-5 desaturase ( ), delta-6 desaturase ( ), and elongase ( ) on changes in RBC and plasma biomarkers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!