Estimating the footprint of pollution on coral reefs with models of species turnover.

Conserv Biol

The Nature Conservancy, Asia Pacific Resource Centre, 48 Montague Road, QLD 4101, South Brisbane, Australia.

Published: August 2018

AI Article Synopsis

  • Ecological communities change with human impact, and measuring this impact, especially from diffuse threats like pollution, is challenging.
  • A joint model was created to analyze benthic habitats on lagoonal coral reefs, allowing for predictions of change in species composition and abundance based on proximity to logging operations.
  • Results showed that areas near logging operations had less healthy coral communities, while the model can be applied broadly to assess human impacts on ecosystems and inform conservation efforts.

Article Abstract

Ecological communities typically change along gradients of human impact, although it is difficult to estimate the footprint of impacts for diffuse threats such as pollution. We developed a joint model (i.e., one that includes multiple species and their interactions with each other and environmental covariates) of benthic habitats on lagoonal coral reefs and used it to infer change in benthic composition along a gradient of distance from logging operations. The model estimated both changes in abundances of benthic groups and their compositional turnover, a type of beta diversity. We used the model to predict the footprint of turbidity impacts from past and recent logging. Benthic communities far from logging were dominated by branching corals, whereas communities close to logging had higher cover of dead coral, massive corals, and soft sediment. Recent impacts were predicted to be small relative to the extensive impacts of past logging because recent logging has occurred far from lagoonal reefs. Our model can be used more generally to estimate the footprint of human impacts on ecosystems and evaluate the benefits of conservation actions for ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cobi.13079DOI Listing

Publication Analysis

Top Keywords

coral reefs
8
estimate footprint
8
impacts logging
8
logging
6
impacts
5
estimating footprint
4
footprint pollution
4
pollution coral
4
reefs models
4
models species
4

Similar Publications

High spatial or temporal variability in community composition makes it challenging for natural resource managers to predict ecosystem trajectories at scales relevant to management. This is commonly the case in nearshore marine environments, where the frequency and intensity of disturbance events vary at the sub-kilometer to meter scale, creating a patchwork of successional stages within a single ecosystem. The successional stage of a community impacts its stability, recovery potential, and trajectory over time in predictable ways.

View Article and Find Full Text PDF

The marine microbiome arouses an increasing interest, aimed at better understanding coral reef biodiversity, coral resilience, and identifying bioindicators of ecosystem health. The present study is a microbiome mining of three environmentally contrasted sites along the Hermitage fringing reef of La Réunion Island (Western Indian Ocean). This mining aims to identify bioindicators of reef health to assist managers in preserving the fringing reefs of La Réunion.

View Article and Find Full Text PDF

Early life stage bottleneck determines rates of coral recovery following severe disturbance.

Ecology

January 2025

Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, USA.

Understanding how foundation species recover from disturbances is key for predicting the future of ecosystems in the Anthropocene. Coral reefs are dynamic ecosystems that can undergo rapid declines in coral abundance following disturbances. Understanding why some reefs recover quickly from these disturbances whereas others recover slowly (or not at all) gives insight into the drivers of community resilience.

View Article and Find Full Text PDF

Herein, we describe a new species of perchlet found at depths of 100-125 meters in mesophotic coral ecosystems of the Maldives in the Indian Ocean. is unique in both morphology and coloration. The following combination of characters distinguishes it from all known congeners: dorsal fin X, 15; anal-fin rays III, 7; pectoral-fin rays 13 | 13 (13 | 12), all unbranched; principal caudal-fin rays 9 + 8; lateral line complete with 30-32 tubed scales; gill rakers 5 + 12; circumpeduncular scales 11-12; and absence of antrorse or retrorse spines on ventral margin of preopercle.

View Article and Find Full Text PDF

'Neither here nor there'? Meiofauna as an effective tool to evaluate the impacts of the 2019 mysterious oil spill in a Northeast Brazil coral reef.

Mar Pollut Bull

January 2025

Universidade Federal de Pernambuco, Programa de Pós-Graduação em Biologia Animal, Center for Biosciences, Av. Prof. Morais Rêgo s/n, Recife, Pernambuco 50670-420, Brazil; Universidade Federal de Pernambuco, Department of Zoology, Center for Biosciences, Av. Prof. Morais Rêgo s/n, Recife, Pernambuco 50670-420, Brazil. Electronic address:

During the last half of 2019, the Northeast coast of Brazil suffered from an extensive oil spill of unknown origin, and marine organisms in those areas were subjected to significant impacts. In situations like this, the contaminant effects can persist for varying periods. Oil contaminants, such as polycyclic aromatic hydrocarbons (PAHs), generally reduce taxa's abundance and diversity in benthic communities in areas with greater exposure to chemical components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!