Tacrine was the first drug approved by FDA (US) for the treatment of Alzheimer's disease suffering patients. Nowadays, this agent has been withdrawn from the clinics due to secondary effects, which, most importantly, include hepatotoxicity. However, the research on new tacrine analogues devoid of these therapeutically undesirable effects, but benefiting of their high and well known positive cholinergic power, has produced a number of new non-hepatotoxic tacrines. In this context, our laboratory has recently prepared a new set of heterocyclic tacrines by changing the benzene ring present in tacrine by appropriate heterocyclic motifs. Based on this approach, in this review we summarize the results that we have found in the ChromenoPyranoTacrines, one of the families of tacrine analogues. This highlights their pharmacological profile, such as their cholinesterase inhibition power, calcium channel blockade, antioxidant capacity, Aβ-anti-aggregating, and neuroprotective properties. As a result of this work we have identified permeable, neuroprotective MTD tacrines racemic hit-tacrines 11-amino-12-(3,4,5-trimethoxyphenyl)-7,9,10,12-tetrahydro-8H-chromeno[2,3- b]quinolin-3-ol (6g) and 14-(3,4-dimethoxyphenyl)-9,11,12,14-tetrahydro-10H-benzo[5,6] chromeno [2,3-b] quinolin-13-amine (7i),devoid of toxic effects and showing potent anti-cholinesterasic properties, that deserve attention and further development in order to find new, and more efficient drugs, for AD therapy.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568026618666180112155928DOI Listing

Publication Analysis

Top Keywords

tacrine analogues
8
tacrines
4
tacrines anti-alzheimer's
4
anti-alzheimer's disease
4
disease agents
4
agents benzochromeno-
4
benzochromeno- pyranotacrines
4
tacrine
4
pyranotacrines tacrine
4
tacrine drug
4

Similar Publications

Novel multipotent conjugate bearing tacrine and donepezil motifs with dual cholinergic inhibition and neuroprotective properties targeting Alzheimer's disease.

RSC Med Chem

January 2025

Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia

In this work, we developed potential multifunctional agents to combat Alzheimer's disease. According to our strategy, fragments of tacrine and donepezil were merged in a unique hybrid structure. After successfully synthesizing the compounds, they were evaluated for their dual AChE/BuChE inhibitor potential and neuroprotector response using a glutamate-induced excitotoxicity model.

View Article and Find Full Text PDF

In this study, novel thiazole-chalcone analogs were synthesized, and their inhibitory effects on acetylcholinesterase (AChE) were examined. In vitro enzyme activity studies were conducted to calculate IC values, which were found to range between 2.55 and 72.

View Article and Find Full Text PDF

The rapid discovery of highly active butyrylcholinesterase (BChE) inhibitors is key to the treatment of the late stages of Alzheimer's disease. Herein, a colorimetric cellulose membrane (CM)-based biosensor was developed. The CM was employed as a carrier, which can be immobilized with the BChE and 5,5'-dithio-(2-nitrobenzoic acid) (DTNB) to prepare the biosensor for the solid-phase enzyme-catalyzed reaction.

View Article and Find Full Text PDF

Background: Alzheimer's disease is a serious and widespread neurodegenerative illness in the modern healthcare scenario. GSK-3β and BuChE are prominent enzymatic targets associated with Alzheimer's disease. Co-targeting GSK3β and BChE in Alzheimer's disease helps to modify disease progression and enhance cognitive function by addressing both tau pathology and cholinergic deficits.

View Article and Find Full Text PDF

We present our results on the synthesis and preliminary in silico and in vitro studies of the toxicology and antioxidant properties of selenylated analogs of Tacrine. Initially, we synthesized 2-aminobenzonitriles containing an organic selenium moiety, resulting in sixteen compounds with various substituents linked to the portion derived from diorganyl diselenide. These compounds were then used as substrates in reactions with cyclic ketones, in the presence of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!