Leptospirosis and dengue are two commonly seen infectious diseases of the tropics. Differential diagnosis of leptospirosis from dengue fever is often difficult due to overlapping clinical symptoms and lack of economically viable and easy-to-perform laboratory tests. The gold standard for diagnosis is the microscopic agglutination test (MAT). In this study, the diagnostic potential of screening for pathogen-specific leptospiral antigens in urine samples is presented as a non-invasive method of disease diagnosis. In a study group of 40 patients, the serum was tested for anti-leptospiral antibodies by MAT and enzyme-linked immunosorbent assay (ELISA). Urine of these patients was screened for leptospiral antigens by ELISA using specific antibodies against LipL32, LipL41, Fla1, HbpA and sphingomyelinase. Group I patients (n = 23) were classified as leptospirosis-positive based on MAT and high titres of circulating IgM-specific anti-leptospiral antibodies. All of these patients excreted all five leptospiral antigens in the urine. The 17 MAT-negative cases included six patients with pyrexia of unknown origin (PUO; Group II) and 11 confirmed dengue patients (Group III). The latter tested negative for both serum anti-leptospiral antibodies and urinary leptospiral antigens. A salient outcome of this study was highlighting the usefulness of screening for urinary leptospiral antigens in disease diagnosis, as their presence confirmed leptospiral aetiology in two PUO patients. Immunoblots of urinary antigens identified well-defined bands corresponding to LipL32, HbpA and sphingomyelinase; the significance of the 42- and 58-kDa sphingomyelinase bands is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10096-018-3187-9 | DOI Listing |
Front Cell Infect Microbiol
December 2024
Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.
Pathogenic are spirochetes that cause leptospirosis, a worldwide zoonotic disease. Leptospirosis affects humans and animals, with approximately 1 million human infections and 60,000 deaths per year. The diversity of leptospiral strains and serovars allied to the fact that pathogenesis is not yet fully understood, make the development of an effective vaccine against leptospirosis a challenge.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand; Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand. Electronic address:
A protein subunit vaccine comprising conserved surface-exposed outer membrane proteins (SE-OMPs) is considered a promising platform for leptospirosis vaccine. The search for novel vaccine candidates that confer high protective efficacy against leptospirosis is ongoing. The LIP3228 protein was previously identified as a conserved and abundant SE-OMP with the potential to serve as an effective vaccine candidate.
View Article and Find Full Text PDFDiagn Microbiol Infect Dis
December 2024
Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. CR Rao Road, Gachibowli, Hyderabad 500 046, India. Electronic address:
The study aims to evaluate the diagnostic potential of pathogen-specific leptospiral sphingomyelinases, LipL32, LipL41, and HbpA in human patients with dengue-leptospirosis coinfection. Patients (n-86), upon clinical evaluation, were categorized into Group I (n-37; leptospirosis), Group II (n-39; dengue-leptospirosis coinfection), and Group III (n-10; negative for both dengue and leptospirosis). ELISA identified significant levels of the four leptospiral antigens in the urine of Group I and II, but not in Group III patients.
View Article and Find Full Text PDFVet Res Forum
October 2024
Department of Immunology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
Leptospirosis is a worldwide zoonotic disease caused by pathogenic spp, often occurring in tropical and subtropical regions. Focusing on development of rapid diagnostic methods to facilitate early diagnosis and a universal vaccine are the main critical issues to overcome the burden of leptospirosis. Here, we have studied the immunogenic potential of prepared recombinant Loa22 protein (rLoa22) of local pathogenic species in mice and its ability to induce humoral and cellular immunity, being further evaluated by analyzing the immunoglobulin G (IgG) subclasses and cytokines produced through immunization.
View Article and Find Full Text PDFVector Borne Zoonotic Dis
October 2024
Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!