Background: During myocardial ischemia/reperfusion (MI/R) injury, there is extensive release of immunogenic metabolites that activate cells of the innate immune system. These include ATP and AMP, which upregulate chemotaxis, migration, and effector function of early infiltrating inflammatory cells. These cells subsequently drive further tissue devitalization. Mesenchymal stromal cells (MSCs) are a potential treatment modality for MI/R because of their powerful anti-inflammatory capabilities; however, the manner in which they regulate the acute inflammatory milieu requires further elucidation. CD73, an ecto-5'-nucleotidase, may be critical in regulating inflammation by converting pro-inflammatory AMP to anti-inflammatory adenosine. We hypothesized that MSC-mediated conversion of AMP into adenosine reduces inflammation in early MI/R, favoring a micro-environment that attenuates excessive innate immune cell activation and facilitates earlier cardiac recovery.
Methods And Results: Adult rats were subjected to 30 minutes of MI/R injury. MSCs were encapsulated within a hydrogel vehicle and implanted onto the myocardium. A subset of MSCs were pretreated with the CD73 inhibitor, α,β-methylene adenosine diphosphate, before implantation. Using liquid chromatography/mass spectrometry, we found that MSCs increase myocardial adenosine availability following injury via CD73 activity. MSCs also reduce innate immune cell infiltration as measured by flow cytometry, and hydrogen peroxide formation as measured by Amplex Red assay. These effects were dependent on MSC-mediated CD73 activity. Finally, through echocardiography we found that CD73 activity on MSCs was critical to optimal protection of cardiac function following MI/R injury.
Conclusions: MSC-mediated conversion of AMP to adenosine by CD73 exerts a powerful anti-inflammatory effect critical for cardiac recovery following MI/R injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5850147 | PMC |
http://dx.doi.org/10.1161/JAHA.117.006949 | DOI Listing |
PLoS One
January 2025
Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, PR China.
Interleukin-34 (IL-34) was recently reported to be a new biomarker for atherosclerosis diseases, such as coronary artery disease and vascular dementia. IL-34 regulates the expression of proinflammatory cytokines (IL-17A, IL-1 and IL-6), which are classical cytokines involved in myocardial ischemia‒reperfusion (MI/R) injury. However, the exact role of IL-34 in MI/R remains unknown.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, China. Electronic address:
Treatment of myocardial ischemia-reperfusion (MI/R) injury still faces the lack of clinically approved drugs. Apelin-13 is a highly promising drug candidate of MI/R injury, but hampered by its extremely short half-life in plasma. This calls for efficient and smart delivering system for Apelin-13 delivery, but has not been reported.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. Electronic address:
Chronic pain is a prevalent condition affecting a significant portion of the global population and is known to be associated with an increased risk of cardiovascular diseases. Despite the clinical relevance, the mechanisms underlying the link between chronic pain and myocardial ischemia-reperfusion (MI/R) injury remain poorly understood. This study aimed to investigate the role of the superior cervical ganglion (SCG) in mediating the effects of chronic pain on MI/R injury and to develop a novel therapeutic strategy.
View Article and Find Full Text PDFCardiovasc Res
January 2025
State Key Laboratory of Cardiovascular Disease, Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
Aims: The therapeutic efficacy of coronary revascularization is compromised by myocardial ischemia-reperfusion (MI/R) injury. Higher levels of circulating arachidonic acid (AA) are reportedly associated with lower risk of cardiovascular disease. The cyclooxygenase (COX) pathway metabolizes AA into prostaglandins (PGs) and the platelet-activating thromboxane A2 (TXA2), which is inhibited by aspirin.
View Article and Find Full Text PDFRedox Biol
February 2025
Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA; Department of Biomedical Engineering, UAB, Birmingham, AL, USA. Electronic address:
Background: Diabetes increases ischemic heart injury via incompletely understood mechanisms. We recently reported that diabetic adipocytes-derived small extracellular vesicles (sEV) exacerbate myocardial reperfusion (MI/R) injury by promoting cardiomyocyte apoptosis. Combining in vitro mechanistic investigation and in vivo proof-concept demonstration, we determined the underlying molecular mechanism responsible for diabetic sEV-induced cardiomyocyte apoptosis after MI/R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!