Rhizospheric microorganisms as a solution for the recovery of soils contaminated by petroleum: A review.

J Environ Manage

Master Program in Industrial Biotechnology, Universidade Positivo (UP), R. Prof. Pedro Viriato Parigot de Souza, 5300, Curitiba, PR 81.280-330, Brazil. Electronic address:

Published: March 2018

Petroleum is currently the world's main energy source, and its demand is expected to increase in coming years. Its intense exploitation can lead to an increase in the number of environmental accidents, such as spills and leaks, and an increase in the generation of environmental liabilities resulting from refining. Due to its hydrophobic characteristics and slow process of biodegradation, petroleum can remain in the environment for a long time and its toxicity can cause a negative impact on both terrestrial and aquatic ecosystems, with the main negative effects related to its carcinogenic potential for both animals and humans. The objective of the present review is to discuss environmental contamination by oil, conventional treatment techniques and bioremediation an alternative tool for recovery petroleum-contaminated soils, focusing on the rhizodegradation process, plant growth-promoting rhizobacteria (PGPR), a phytoremediation strategy in which the microorganisms that colonize the roots of phytoremediatior plants are responsible for the biodegradation of petroleum. These microorganisms can be selected and tested individually or in the form of consortia to evaluate their potential for oil degradation, or even to measure the use of biosurfactants produced by them to constitute tools for the development of environmental recovery strategies and biotechnological application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2018.01.015DOI Listing

Publication Analysis

Top Keywords

biodegradation petroleum
8
rhizospheric microorganisms
4
microorganisms solution
4
solution recovery
4
recovery soils
4
soils contaminated
4
petroleum
4
contaminated petroleum
4
petroleum review
4
review petroleum
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!