Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We previously described the gelation mechanism of calcium polyphosphate (CPP) in the presence of water. In this study, we developed novel and injectable poly-dicalcium phosphate dihydrate (P-DCPD) forming cement by the reaction of acidic CPP gel with alkali tetracalcium phosphate (TTCP). The setting reaction mechanism of P-DCPD is due to the intermolecular interaction between CPP gel and TTCP that was supported by XRD, AFM, Raman spectra analysis and SEM. The setting mechanism of P-DCPD is completely different from the classical calcium phosphate cement (CPC) that achieves crystallization by monophosphates reaction. P-DCPD represents a new type of poly-CPCs with significant advantages, including strong mechanical strength, excellent cohesion and easy of handling. More extensive experiments are currently underway to further evaluate the performance of P-DCPD cements, including biocompatibility, degradation behavior and bone defect hearing efficacy, among others.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2017.12.032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!