Herein, we report an optical sensing platform for mercury ions (Hg) in water based on the integration of Hg-mediated thymine-thymine (T-T) stabilization, a biotinylated stem-loop DNA probe, and a streptavidin-modified retroreflective Janus particle (SA-RJP). Two oligonucleotide probes, including a stem-loop DNA probe and an assistant DNA probe, were utilized. In the absence of Hg, the assistant DNA probe does not hybridize with the stem-loop probe due to their T-T mismatch, so the surface-immobilized stem-loop DNA probe remains a closed hairpin structure. In the presence of Hg, the DNA forms a double-stranded structure with the loop region via Hg-mediated T-T stabilization. This DNA hybridization induces stretching of the stem-loop DNA probe, exposing biotin. To translate these Hg-mediated structural changes in DNA probe into measurable signal, SA-RJP, an optical signaling label, is applied to recognize the exposed biotin. The number of biospecifically bound SA-RJPs is proportional to the concentration of Hg, so that the concentration of Hg can be quantitatively analyzed by counting the number of RJPs. Using the system, a highly selective and sensitive measurement of Hg was accomplished with a limit of detection of 0.027nM. Considering the simplified optical instrumentation required for retroreflection-based RJP counting, RJP-assisted Hg measurement can be accomplished in a much easier and inexpensive manner. Moreover, the detection of Hg in real drinking water samples including tap and commercial bottled water was successfully carried out.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2018.01.008 | DOI Listing |
Anal Chem
January 2025
School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China.
Formamidopyrimidine DNA glycosylase (Fpg) and flap endonuclease 1 (FEN1) are essential to sustaining genomic stability and integrity, while the abnormal activities of Fpg and FEN1 may lead to various diseases and cancers. The development of simple methods for simultaneously monitoring Fpg and FEN1 is highly desirable. Herein, we construct a multiple cyclic ligation-promoted exponential recombinase polymerase amplification (RPA) platform for sensitive and simultaneous monitoring of Fpg and FEN1 in cells and clinical tissues.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China; National Health Commission Key Laboratory of Birth Defect Research and Preventio, Hunan Provincial Maternal and Child Health Care Hospital;
Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Huai'an Hospital Affiliated to Yangzhou University, The Fifth People's Hospital of Huai'an), 1 Huaihe East Road, Huaiyin District, Huai'an City, Jiangsu Province, China.
Ginkgolide B (GB) is a bioactive constituent found in Ginkgo biloba leaves that has been long recognized as a protective agent against many neurological disorders. Our study aimed to examine the effect of GB in an in vitro Parkinson's disease (PD) model and to investigate its neuroprotective mechanism as a primary objective. SK-N-SH cells were challenged with 1-methyl-4-phenylpyridinium (MPP) to act as a PD-like model of neuronal damage.
View Article and Find Full Text PDFInt J Gynecol Cancer
January 2025
Helsinki University Hospital and University of Helsinki, Department of Obstetrics and Gynecology, Helsinki, Finland; University of Helsinki, Faculty of Medicine, Helsinki University Hospital and Research Program in Applied Tumor Genomics, Department of Pathology, Helsinki, Finland.
Objective: Endometrial carcinomas with mismatch repair deficiency (MMRd) and no specific molecular profile (NSMP) are considered to have intermediate prognoses. However, potential prognostic differences between these molecular subgroups remain unclear due to the lack of standardized control for clinicopathologic factors. This study aims to evaluate outcomes of MMRd and NSMP endometrial carcinomas across guideline-based clinicopathologic risk groups.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, United States.
Growth in the development of engineered polymerases for synthetic biology has led to renewed interest in assays that can measure the fidelity of polymerases that are capable of synthesizing artificial genetic polymers (XNAs). Conventional approaches require purifying the XNA intermediate of a replication cycle (DNA → XNA → DNA) by denaturing polyacrylamide gel electrophoresis, which is a slow, costly, and inefficient process that requires a large-scale transcription reaction and careful extraction of the XNA strand from the gel slice. In an effort to streamline the assay, we developed a purification-free approach in which the XNA transcription and reverse transcription steps occur inside the matrix of a hydrogel-coated magnetic particle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!