Repetitive fatigue loading can induce microdamage accumulation in bone matrix, which results in impaired mechanical properties and increased fracture susceptibility. However, the spatial distribution and time-variant process of microdamage accumulation in fatigue-loaded skeleton, especially for linear microcracks which are known to initiate bone remodeling, remain not fully understood. In this study, the time-varying process of the morphology and distribution of microcracks in rat ulnae subjected to uniaxial compressive fatigue loading was investigated. Right forelimbs of thirty four-month-old male Sprague-Dawley rats were subjected to one bout of cyclic ramp loading with 0.67 Hz at a normalized peak force of 0.055 N/g body weight for 6000 cycles, and the contralateral left ulnae were not loaded as the control samples. Ten rats were randomly euthanized on Days 3, 5, and 7 post fatigue loading. Our findings via two-dimensional histomorphometric measurements based on basic fuchsin staining and three-dimensional quantifications using contrast-enhanced micro-computed tomography (MicroCT) with precipitated BaSO staining demonstrated that the accumulation of linear microcracks (increase in the amount of linear microcracks) on Day 5 was significantly higher than that on Day 3 and Day 7 post fatigue loading. Our histological and histomorphometric results revealed that linear microcrack density (Cr.Dn) in the tensile cortex at Days 3, 5 and 7 post fatigue loading was significantly higher than that in the compressive side, whereas linear microcrack length (Cr.Le) in the tensile cortex at Day 3 was significantly lower than that in the compressive cortex. Our findings revealed that microcrack accumulation exhibited a non-linear time-varying process at 3, 5 and 7 days post axial compressive fatigue loading (with observable peak Cr.Dn at Day 5). Our findings also revealed distinct distribution of microcrack density and morphology in rat ulnae with tensile and compressive strains, as characterized by more microcracks accumulated in tensile cortices, and longer cracks shown in compressive cortices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2018.01.011 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Institut Langevin, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Université Paris Sciences & Lettres, CNRS, Paris 7587, France.
Understanding the dynamic response of granular shear zones under cyclic loading is fundamental to elucidating the mechanisms triggering earthquake-induced landslides, with implications for broader fields such as seismology and granular physics. Existing prediction methods struggle to accurately predict many experimental and in situ landslide observations due to inadequate consideration of the underlying physical mechanisms. The mechanisms that influence landslide dynamic triggering, a transition from static (or extremely slow creeping) to rapid runout, remain elusive.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Institute of Clean Energy, Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang 215400, China.
Continuous and interrupted low cycle fatigue tests were conducted on nuclear-grade S30408 stainless steel under different stress conditions at room temperature. Vickers hardness testing and microstructure characterization were performed on the fatigue samples with different fatigue states. The evolutionary mechanism of the microstructure defects in materials under fatigue cyclic loading was discussed.
View Article and Find Full Text PDFJ Biomech Eng
January 2025
School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Ave, Norman, OK 73019, USA.
Hearing loss is highly related to acoustic injuries and mechanical damage of ear tissues. The mechanical responses of ear tissues are difficult to measure experimentally, especially cochlear hair cells within the organ of Corti (OC) at microscale. Finite element (FE) modeling has become an important tool for simulating acoustic wave transmission and studying cochlear mechanics.
View Article and Find Full Text PDFPhys Sportsmed
January 2025
Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain.
Objectives: This study aimed to compare the psychological demands and external workload experienced in the seven sessions leading up to injuries and the demands in the month preceding the injury week among professional Brazilian soccer players.
Methods: Initially, 33 players participated, but only 15 were included in the analysis due to the occurrence of twenty-three muscle-tendon injuries recorded according to International Olympic Committee (IOC) guidelines. The study assessed muscle-tendon injuries, rate of perceived exertion (RPE), and psychological variables (i.
Sci Rep
January 2025
Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.
Car accidents, infections caused by bacteria or viruses, metastatic lesions, tumors, and malignancies are the most frequent causes of chest wall damage, leading to the removal of the affected area. After excision, artificial bone or synthetic materials are used in chest wall reconstruction to restore the skeletal structure of the chest. Chest implants have traditionally been made from metallic materials like titanium alloys due to their biocompatibility and durability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!